Numerical study on the effect of box and polygon geometry in fin and tube heat exchanger on fluid flow and heat transfer
Abstract
Currently, fin and tube heat exchangers are widely used in various engineering applications, including modern heat exchangers, automotive radiators, and Air Conditioning (AC) systems such as evaporators, and condensers. Enhancing their performance necessitates innovative designs, advanced application, and optimizes geometries to improve heat transfer efficiency. This study investigates the effect of box and polygon geometries on fluid flow and heat transfer in a split Air Conditioner (AC) fin and tube heat exchanger using simulation software. The research examines two tube arrangement-inline and staggered-across different fluid velocities (0.5 m/s, 1 m/s, 1.5 m/s, and 2.5 m/s) and heat flux values (100 W/m2 , 125 W/m2, 125 W/m2, and 150 W/m2 ). The numerical study revealed that the best thermal and hydraulic performance of the fin and tube heat exchanger, based on geometry variations between box and polygon tubes, was achieved with the polygon tube geometry, which resulted in a lower temperature around 23.41°C. This temperature confirmed an increase in heat transfer coefficient by approximately 5% and Nusselt number by about 3%. The best performance overall, considering both thermal and hydraulic aspects, was observed in the inline arrangement, especially for the polygon tube, which resulted in a lower temperature of around 26.38°C. This confirmed an improvement in the heat transfer coefficient by about 4% and the Nusselt number by 2.5%.
Keywords
Full Text:
PDFReferences
Alnakeeb, A., El-Maghlany, W. M., Teamah, M. A., &
Sorour, M. M. (2014). Experimental Study of Mixed
Convection from Horizontal Isothermal Elliptic Cylinders at
Different Aspect Ratios. A Journal of Thermal Energy
Generation, Transport, Storage, and Conversion, ISSN: 0891.
Bayat, H., Lavasani, A. M., & Maarefdoost, T. (2014).
Experimental Study of Thermal–Hydraulic Performance of
Cam-Shaped Tube Bundle with Staggered Arrangement.
Energy Conversion and Management, 85, 470–476.
Bhuiyan, A., Amin, M. R., & Islam, A. K. M. S. (2013).
Three-Dimensional Performance Analysis of Plain Fin Tube
Heat Exchangers in Transitional Regime. Applied Thermal
Engineering, 50, 445–455.
Bhuiyan, A., & Islam, A. K. M. S. (2016). Thermal and
Hydraulic Performance of Finned-Tube Heat Exchangers
under Different Flow Ranges: A Review on Modeling and
Experiment. International Journal of Heat and Mass Transfer,
, 38–59.
Cárdenas, S. D. G., Kantharaj, B., & Simpson, M. C. (2017).
Gas-to-Gas Heat Exchanger Design for High Performance
Thermal Energy Storage. Journal of Energy Storage, 14, 311–
Dowson, D. (1998). History of tribology. Number. … London
and Bury St Edmunds, UK.
Eleiwi, M. A., Zainal, O. A., Tahseen, T. A., & Mustafa, A.
W. (2020). Effect of Front Air Attack Angles on Heat
Transfer Coefficient of the Cross‐Flow of Four Flat Tube.
Heat Transfer, 1–17.
Fiebig, M. (1998). Vortices, Generators and Heat Transfer.
Chemical Engineering Research and Design, 76(2), 108–123.
Fullerton, T. L., & Anand, N. K. (2017). Periodically FullyDeveloped Flow and Heat Transfer over Flat and Oval Tubes
Using a Control Volume Finite-Element Method. Taylor and
Francis, ISSN: 1040.
Gaos, Y. S., Nurtanto, B. D., Al, H., Sutoyo, E., Agency, I.,
Selatan, T., Engineering, B., & Khaldun, I. (2024). Jurnal
Polimesin. 22(4), 448–452.
Lu, C. W., Huang, J. M., Nien, W. C., & Wang, C. C. (2011).
A Numerical Investigation of the Geometric Effects on the
Performance of Plate Finned-Tube Heat Exchanger. Energy
Conversion and Management, 52, 1638–1643.
Min, Z. G., Xue-li, L., Nai-xiang, Z., Yan-ping, S., & Li-min,
L. (2014). Flow and Heat Transfer Characteristics around
Egg-Shaped Tube. Journal of Hydrodynamics, 27, 76–84.
Munawir, A., Rubiono, G., & ... (2017). Studi Prototipe
Pengaruh Sudut Kemiringan Poros Baling-Baling Terhadap
Daya Dorong Kapal Laut. V-MAC (Virtual of ….
https://ejournal.unibabwi.ac.id/index.php/vmac/article/view/1
Nakkaew, S., Chitipalungsri, T., Ahn, H. S., Jerng, D.-W.,
Asirvatham, L. G., Dalkılıç, A. S., Mahian, O., & Wongwises,
S. (2019). Application of the heat pipe to enhance the
performance of the vapor compression refrigeration system.
Case Studies in Thermal Engineering, 15, 100531.
https://doi.org/https://doi.org/10.1016/j.csite.2019.100531
Posner, J. D., Buchanan, C. R., & Dunn-Rankin, D. (2003).
Measurement and prediction of indoor air flow in a model
room. Energy and Buildings, 35(5), 515–526.
https://doi.org/https://doi.org/10.1016/S0378-7788(02)00163-
Rosidi, A., Haryanto, D., Adi Wahanani, N., Dwi Setyo
Pambudi, Y., & Hadi Kusuma, M. (2022). The simulation of
heat transfers and flow characterization on wickless loop heat
pipe. Jurnal Polimesin, 20(1), 29–35.
Safi’i, M., Sinaga, N., Priangkoso, T., Susanto, & Digdoyo,
A. (2021). Investigasi Model Numerik pada Simulasi Heat
Sink Sirip Lurus dengan Memvariasikan Jumlah Grid, Model
Viscous, dan Metode Pemecahan dengan Pendinginan
Konveksi Bebas. Majalah iImiah Momentum, 20(1), 31–41.
Sahel, A., Houari, A., & Warda, B. (2019). A New
Correlation for Predicting the Hydrothermal Characteristics
over Flat Tube Banks. Journal Mechanical and Energy, ISSN:
Sariyusda. (2009). Analisa Bentuk Strip Proses Perpindahan
Panas Pada Heat Exchanger Pendingin Udara. Polimesin,
(2), 685–695.
Syuhada, A., & Edhy, S. (2023). Jurnal Polimesin. 21(1),
–133.
Versteeg, H. K. (2007). An introduction to computational
fluid dynamics the finite volume method, 2/E. Pearson
Education India.
https://www.researchgate.net/profile/GhassanSmaisim/post/FEM_mesh_generator/attachment/59d655b479
b80779acc78/AS%3A526908706508800%401502636233
/download/110+Versteeg+2007+an+introduction+to+com
putational+fluid+dynamics+the+finite+volume+method+2nd
+e
Yang, L., Xu, M., Wang, J., Song, L., & Wang, J. (2021).
Experimental and numerical analysis of a demister with
vortex generators. Chinese Journal of Chemical Engineering,
, 83–95.
DOI: http://dx.doi.org/10.30811/jpl.v22i6.5624
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .
Alamat Surat :
Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia