Numerical study on the effect of box and polygon geometry in fin and tube heat exchanger on fluid flow and heat transfer

Agung Nugroho, Muhammad Safi'i, Bukhori Putra Romadhon, Muhammad Abdul Wahid, Muhammad Edi Pujianto

Abstract


Currently, fin and tube heat exchangers are widely used in various engineering applications, including modern heat exchangers, automotive radiators, and Air Conditioning (AC) systems such as evaporators, and condensers. Enhancing their performance necessitates innovative designs, advanced application, and optimizes geometries to improve heat transfer efficiency. This study investigates the effect of box and polygon geometries on fluid flow and heat transfer in a split Air Conditioner (AC) fin and tube heat exchanger using simulation software. The research examines two tube arrangement-inline and staggered-across different fluid velocities (0.5 m/s, 1 m/s, 1.5 m/s, and 2.5 m/s) and heat flux values (100 W/m2 , 125 W/m2, 125 W/m2, and 150 W/m2 ). The numerical study revealed that the best thermal and hydraulic performance of the fin and tube heat exchanger, based on geometry variations between box and polygon tubes, was achieved with the polygon tube geometry, which resulted in a lower temperature around 23.41°C. This temperature confirmed an increase in heat transfer coefficient by approximately 5% and Nusselt number by about 3%. The best performance overall, considering both thermal and hydraulic aspects, was observed in the inline arrangement, especially for the polygon tube, which resulted in a lower temperature of around 26.38°C. This confirmed an improvement in the heat transfer coefficient by about 4% and the Nusselt number by 2.5%.


Keywords


Fin, tube, heat exchanger, box, polygon, inline, staggered.

Full Text:

PDF

References


Alnakeeb, A., El-Maghlany, W. M., Teamah, M. A., &

Sorour, M. M. (2014). Experimental Study of Mixed

Convection from Horizontal Isothermal Elliptic Cylinders at

Different Aspect Ratios. A Journal of Thermal Energy

Generation, Transport, Storage, and Conversion, ISSN: 0891.

Bayat, H., Lavasani, A. M., & Maarefdoost, T. (2014).

Experimental Study of Thermal–Hydraulic Performance of

Cam-Shaped Tube Bundle with Staggered Arrangement.

Energy Conversion and Management, 85, 470–476.

Bhuiyan, A., Amin, M. R., & Islam, A. K. M. S. (2013).

Three-Dimensional Performance Analysis of Plain Fin Tube

Heat Exchangers in Transitional Regime. Applied Thermal

Engineering, 50, 445–455.

Bhuiyan, A., & Islam, A. K. M. S. (2016). Thermal and

Hydraulic Performance of Finned-Tube Heat Exchangers

under Different Flow Ranges: A Review on Modeling and

Experiment. International Journal of Heat and Mass Transfer,

, 38–59.

Cárdenas, S. D. G., Kantharaj, B., & Simpson, M. C. (2017).

Gas-to-Gas Heat Exchanger Design for High Performance

Thermal Energy Storage. Journal of Energy Storage, 14, 311–

Dowson, D. (1998). History of tribology. Number. … London

and Bury St Edmunds, UK.

Eleiwi, M. A., Zainal, O. A., Tahseen, T. A., & Mustafa, A.

W. (2020). Effect of Front Air Attack Angles on Heat

Transfer Coefficient of the Cross‐Flow of Four Flat Tube.

Heat Transfer, 1–17.

Fiebig, M. (1998). Vortices, Generators and Heat Transfer.

Chemical Engineering Research and Design, 76(2), 108–123.

Fullerton, T. L., & Anand, N. K. (2017). Periodically FullyDeveloped Flow and Heat Transfer over Flat and Oval Tubes

Using a Control Volume Finite-Element Method. Taylor and

Francis, ISSN: 1040.

Gaos, Y. S., Nurtanto, B. D., Al, H., Sutoyo, E., Agency, I.,

Selatan, T., Engineering, B., & Khaldun, I. (2024). Jurnal

Polimesin. 22(4), 448–452.

Lu, C. W., Huang, J. M., Nien, W. C., & Wang, C. C. (2011).

A Numerical Investigation of the Geometric Effects on the

Performance of Plate Finned-Tube Heat Exchanger. Energy

Conversion and Management, 52, 1638–1643.

Min, Z. G., Xue-li, L., Nai-xiang, Z., Yan-ping, S., & Li-min,

L. (2014). Flow and Heat Transfer Characteristics around

Egg-Shaped Tube. Journal of Hydrodynamics, 27, 76–84.

Munawir, A., Rubiono, G., & ... (2017). Studi Prototipe

Pengaruh Sudut Kemiringan Poros Baling-Baling Terhadap

Daya Dorong Kapal Laut. V-MAC (Virtual of ….

https://ejournal.unibabwi.ac.id/index.php/vmac/article/view/1

Nakkaew, S., Chitipalungsri, T., Ahn, H. S., Jerng, D.-W.,

Asirvatham, L. G., Dalkılıç, A. S., Mahian, O., & Wongwises,

S. (2019). Application of the heat pipe to enhance the

performance of the vapor compression refrigeration system.

Case Studies in Thermal Engineering, 15, 100531.

https://doi.org/https://doi.org/10.1016/j.csite.2019.100531

Posner, J. D., Buchanan, C. R., & Dunn-Rankin, D. (2003).

Measurement and prediction of indoor air flow in a model

room. Energy and Buildings, 35(5), 515–526.

https://doi.org/https://doi.org/10.1016/S0378-7788(02)00163-

Rosidi, A., Haryanto, D., Adi Wahanani, N., Dwi Setyo

Pambudi, Y., & Hadi Kusuma, M. (2022). The simulation of

heat transfers and flow characterization on wickless loop heat

pipe. Jurnal Polimesin, 20(1), 29–35.

Safi’i, M., Sinaga, N., Priangkoso, T., Susanto, & Digdoyo,

A. (2021). Investigasi Model Numerik pada Simulasi Heat

Sink Sirip Lurus dengan Memvariasikan Jumlah Grid, Model

Viscous, dan Metode Pemecahan dengan Pendinginan

Konveksi Bebas. Majalah iImiah Momentum, 20(1), 31–41.

Sahel, A., Houari, A., & Warda, B. (2019). A New

Correlation for Predicting the Hydrothermal Characteristics

over Flat Tube Banks. Journal Mechanical and Energy, ISSN:

Sariyusda. (2009). Analisa Bentuk Strip Proses Perpindahan

Panas Pada Heat Exchanger Pendingin Udara. Polimesin,

(2), 685–695.

Syuhada, A., & Edhy, S. (2023). Jurnal Polimesin. 21(1),

–133.

Versteeg, H. K. (2007). An introduction to computational

fluid dynamics the finite volume method, 2/E. Pearson

Education India.

https://www.researchgate.net/profile/GhassanSmaisim/post/FEM_mesh_generator/attachment/59d655b479

b80779acc78/AS%3A526908706508800%401502636233

/download/110+Versteeg+2007+an+introduction+to+com

putational+fluid+dynamics+the+finite+volume+method+2nd

+e

Yang, L., Xu, M., Wang, J., Song, L., & Wang, J. (2021).

Experimental and numerical analysis of a demister with

vortex generators. Chinese Journal of Chemical Engineering,

, 83–95.




DOI: http://dx.doi.org/10.30811/jpl.v22i6.5624

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .

 

Alamat Surat :

Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia