Design and manufacturing of Welded Vacuum Testing (WVT) tool

Ariyanto Ariyanto, Muhammad Aqdar Fitrah, Salma salu, Muh Nurul Haq Amaluddin, Arman Latif, Rahmat Alwi, Halim Halim

Abstract


To ensure the quality of welded joints in the hull area, welding testing is very important and must be carried out. But unfortunately, currently the quality testing process of welded joints was still limited to penetrant tests and lime tests. The purpose of this study was to obtain a portable welding testing machine that was able to obtain fairly accurate test results on hull welding defects using a vacuum system. The research method is experimental by involving data collection through field experiments, testing is carried out with the resulting weld defect research subjects and the length of testing time on 1G and 3G position welding. The results of the study by compared tests among Welded Vacuum Testing (WVT) machines, Magnetic Particle tests (MP), and Penetrant Tests (PT). The three experiments detected leaking weld defects, spark sparks, pinholes, overlaps, and undercuts. For test results with machines made, welding defects that were successfully detected were leaks in the 1G position welding workpiece and undercut in the 3G position welding workpiece. Air bubbles at a vacuum pressure of 0.2 bar are detected, meaning that there is a defect in the welded joint. This tool can be used in bilge testing.


Keywords


Quality of welded joints, ship hull, portable welding testing machine, welding defects.

Full Text:

PDF

References


Y. Jing and L. M. Yu, “Ship welding defect analysis and quality control,” Appl. Mech. Mater., vol. 365–366, pp. 1229–1234, 2013, doi: 10.4028/www.scientific.net/AMM.365-366.1229.

N. Haghshenas and H. Moshayedi, “Monitoring of Resistance Spot Welding Process,” Exp. Tech., vol. 44, no. 1, pp. 99–112, 2020, doi: 10.1007/s40799-019-00341-z.

Ariyanto, M. S. Sukardin, I. Renreng, H. Arsyad, M. Syahid, and M. Alwi, “Optimization of Resistance Spot Welding With Surface Roughness Dissimilar Mild Steel With Stainless Steel,” Eastern-European J. Enterp. Technol., vol. 5, no. 12(125), pp. 63–71, 2023, doi: 10.15587/1729-4061.2023.285711.

Ariyanto, H. Arsyad, M. Syahid, and R. Ilyas, “Optimization of Welding Parameters for Resistance Spot Welding with Variations in the Roughness of the Surface of the AISI 304 Stainless Steel Joint to Increase Joint Quality,” Int. J. Mech. Eng. Robot. Res., vol. 11, no. 11, pp. 877–883, 2022, doi: 10.18178/ijmerr.11.11.877-883.

I. Taufiqurrahman, T. Lenggo Ginta, and M. Mustapha, “The effect of holding time on dissimilar resistance spot welding of stainless steel 316L and Ti6Al4V titanium alloy with aluminum interlayer,” Mater. Today Proc., vol. 46, pp. 1563–1568, 2021, doi: 10.1016/j.matpr.2020.07.237.

D. Andika Saputra and A. Fathoni Syam, “Pengaruh Kuat Arus Listrik Pada Pengelasan SMAW Penyambungan Pipa Baja Karbon ASTM 53 Grade B Terhadap Tensile Stranght The Effect OF Strong Electricity On SMAW Welding ASTM 53 Grade B Carbon Steel Pipe Connection On Tensile Stanght,” J. Smart Teknol., vol. 3, no. 5, pp. 2774–1702, 2022, [Online]. Available: http://jurnal.unmuhjember.ac.id/index.php/JST

Esmaeil Mirmahdi, “Numerical and Experimental Modeling of Spot Welding Defects by Ultrasonic Testing on Similar Sheets and Dissimilar Sheets,” Russ. J. Nondestruct. Test., vol. 56, no. 8, pp. 620–634, 2020, doi: 10.1134/S1061830920080069.

W. B. Davis, “Predicting spot weld button area with an ultrasonic phased array,” AIP Conf. Proc., vol. 975, pp. 731–738, 2008, doi: 10.1063/1.2902735.

M. Gáspár, Á. Dobosy, M. Tisza, I. Török, Y. Dong, and K. Zheng, “Improving the properties of AA7075 resistance spot-welded joints by chemical oxide removal and post weld heat treating,” Weld. World, vol. 64, no. 12, pp. 2119–2128, 2020, doi: 10.1007/s40194-020-00988-y.

M. R. A. Shawon, F. Gulshan, and A. S. W. Kurny, “Effect of Welding Current on the Structure and Properties of Resistance Spot Welded Dissimilar (Austenitic Stainless Steel and Low Carbon Steel) Metal Joints,” J. Inst. Eng. Ser. D, vol. 96, no. 1, pp. 29–36, 2015, doi: 10.1007/s40033-014-0060-6.

P. Kah, B. Mvola, J. Martikainen, and R. Suoranta, “Real time non-destructive testing methods of welding,” Adv. Mater. Res., vol. 933, pp. 109–116, 2014, doi: 10.4028/www.scientific.net/AMR.933.109.

G. Senthil Kumar, U. Natarajan, T. Veerarajan, and S. S. Ananthan, “Quality level assessment for imperfections in GMAW,” Weld. J., vol. 93, no. 3, 2014.

C. Reichert, “Pre- and PostWe1d Inspection Using Laser Vision,” vol. 3396, pp. 244–254.

B. I. Olalere, J. O. Gidiagba, A. A. Fawole, B. A. Egbokhaebho, N. N. -Ehiobu, and J. I. Okparaeke, “Review of Advanced Welding and Testing for Safety in Offshore Oil and Gas,” Mater. Corros. Eng. Manag., vol. 4, no. 2, pp. 37–43, 2023, doi: 10.26480/macem.02.2023.37.43.

A. Mazlan, H. Daniyal, A. I. Mohamed, M. Ishak, and A. A. Hadi, “Monitoring the quality of welding based on welding current and ste analysis,” IOP Conf. Ser. Mater. Sci. Eng., vol. 257, no. 1, pp. 0–5, 2017, doi: 10.1088/1757-899X/257/1/012043.

A. G. Olabi, R. L. Lorza, and K. Y. Benyounis, Quality Control in Welding Process, vol. 6. Elsevier, 2014. doi: 10.1016/B978-0-08-096532-1.00607-5.

D. Li, “Research on quality management of manufacturing equipment welding technology,” Appl. Mech. Mater., vol. 192, pp. 415–419, 2012, doi: 10.4028/www.scientific.net/AMM.192.415.

J. Stavridis, A. Papacharalampopoulos, and P. Stavropoulos, “Quality assessment in laser welding: a critical review,” Int. J. Adv. Manuf. Technol., vol. 94, no. 5–8, pp. 1825–1847, 2018, doi: 10.1007/s00170-017-0461-4.

S. Sulaiman, B. Utomo, and I. P. A. Ardi Wijana, “Analisis Uji Tidak Merusak Pada Sambungan Las Lambung Frame 103 Bagian Kamar Mesin Kapal Patroli 73 Dengan Metode Radiography Test,” Gema Teknol., vol. 20, no. 4, pp. 146–152, 2020, doi: 10.14710/gt.v20i4.28516.

H. Sunaryo, Teknik Pengelasan Kapal, vol. 53, no. 9. 2008.

K. Vignesh, A. E. Perumal, and P. Velmurugan, “Resistance spot welding of AISI-316L SS and 2205 DSS for predicting parametric influences on weld strength – Experimental and FEM approach,” Arch. Civ. Mech. Eng., vol. 19, no. 4, pp. 1029–1042, 2019, doi: 10.1016/j.acme.2019.05.002.

H. Wibowo, A. M. P, and B. L. B. Aldho Jaya P, Aldyth Gunanto P, “Development of roller tank prototypes for moving goods with a capacity of 5 tons,” Polimesin, vol. 20, no. 2, pp. 121–127, 2023, [Online]. Available: https://e-jurnal.pnl.ac.id/polimesin/article/view/3626/3230

F. Herlina, M. Suprapto, and S. Siswanto, “Analisa Teknis Pengujian Kekedapan Pengelasan Pada Tangki Tongkang Dengan Membandingkan Metode Chalk Test, Air Pressure Test Dan Vacuum Test,” Info-Teknik, vol. 19, no. 1, p. 69, 2018, doi: 10.20527/infotek.v19i1.5143.




DOI: http://dx.doi.org/10.30811/jpl.v22i3.5024

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .

 

Alamat Surat :

Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia