Effect of Perforated Aluminum on Calotropis Gigantea Fiber Material’s Ability to Absorption Sound
Abstract
Plants fibers such as Calotropis gigantea (CG) are very suitable as noise reduction material. Therefore, this research aims to determine the sound absorption coefficient of CG in the 20 mm test sample and the effect of the perforated aluminum layer on its ability. It was carried out using a test sample made with a thickness of 20 mm and 100 mm in diameter. The thickness of aluminum was 0.3 mm with hole diameters of 1 mm, 1.5 mm, and 2.5 mm. During the experiment, every sample was heated and pressed in a mold for 10 minutes at 200oC. The test equipment used is a Bruel & Kjaer Type 4206 impedance tube with 100 mm in diameter. The sample was tested using the transfer function method ISO 10534-2:1998 at a frequency of 1/1 octave. The results indicated that the uncoated sample absorbed noise α = 0.01-0.07 (1-7)% higher than the sample coated with perforated aluminum. This showed that the Noise Reduction Coefficient (NRC) without aluminum coating can reduce noise by 29%, and the measured sample is categorized in class D.
Keywords
Full Text:
PDFReferences
N. D. Yilmaz et al., “Pengaruh Parameter Bahan dan
Perlakuan pada Kinerja Kontrol Kebisingan Nonwoven
Multifiber Terkompresi Jarum-Punched Tiga Lapis,” vol.
, pp. 2095–2106, 2012, doi: 10.1002/aplikasi.
R. K. S, T. Sangavi, R. R. S, S. Murali, and V. Sai, “Acoustic
Performance of Multilayer Nonwoven,” Int. Res. J. Eng.
Technol., vol. 07, no. June, pp. 6992–7004, 2020.
F. Asade and I. Isranuri, “Eksperimental Koefisien Serap
Bunyi Paduan,” e-Dinamis, vol. 6, no. 2, pp. 90–98, 2013.
L. Wang and F. S. Zhang, “Characterization of a novel sound
absorption material derived from waste agricultural film,”
Constr. Build. Mater., vol. 157, pp. 237–243, 2017, doi:
1016/j.conbuildmat.2017.07.192.
L. Cao, Q. Fu, Y. Si, B. Ding, and J. Yu, “Porous materials
for sound absorption,” Compos. Commun., vol. 10, no. May,
pp. 25–35, 2018, doi: 10.1016/j.coco.2018.05.001.
M. Sfiligoj, S. Hribernik, K. Stana, and T. Kree, “Plant
Fibres for Textile and Technical Applications,” Adv.
Agrophysical Res., 2013, doi: 10.5772/52372.
A. Ashori and Z. Bahreini, “Evaluation of calotropis gigantea
as a promising raw material for fiber-reinforced composite,”
J. Compos. Mater., vol. 43, no. 11, pp. 1297–1304, 2009,
doi: 10.1177/0021998308104526.
Y. M. Pell, “Pengaruh Fraksi Volume Terhadap
Karakterisasi Mekanik,” Semin. Nas. Sains dan Tek., vol.
, no. Sainstek, p. T 114-120, 2012.
G. Dilli Babu, K. Sivaji Babu, and P. Nanda Kishore,
“Tensile and wear behavior of calotropis gigentea fruit fiber
reinforced polyester composites,” Procedia Eng., vol. 97, pp.
–535, 2014, doi: 10.1016/j.proeng.2014.12.279.
M. D. Sukardan, D. Natawijaya, P. Prettyanti, C. Cahyadi,
and E. Novarini, “Karakterisasi Serat Dari Tanaman Biduri
(Calotropis Gigantea) Dan Identifikasi Kemungkinan
Pemanfaatannya Sebagai Serat Tekstil,” Arena Tekst., vol. 31,
no. 2, pp. 51–62, 2017, doi: 10.31266/at.v31i2.1986.
P. Narayanasamy et al., “Characterization of a novel natural
cellulosic fiber from Calotropis gigantea fruit bunch for
ecofriendly polymer composites,” Int. J. Biol. Macromol.,
vol. 150, pp. 793–801, 2020, doi:
1016/j.ijbiomac.2020.02.134.
J. Riset et al., “Kinerja akustik multilayer nonwoven,” pp.
–7004, 2020.
ISO-10534, “Determination of sound absorption
coefficient and impedance in impedance tubes,” Part 2
Transf. method, vol. ISO 10534, pp. 1–27, 1998.
S. S. Bhattacharya and D. V. Bihola, “Acoustic properties of
kapok fibre,” Int. J. Eng. Adv. Technol., vol. 9, no. 1, pp.
–2168, 2019, doi: 10.35940/ijeat.A9688.109119.
R. Eriningsih, M. Widodo, R. Marlina, and B. B. Tekstil,
“Baku Serat Alam Manufacture and Characterization of
Natural Fibers Sound,” Arena Tekst., vol. 29, no. 1, pp. 1–8,
E. Taban et al., “Study on the acoustic characteristics of
natural date palm fibres: Experimental and theoretical
approaches,” Build. Environ., vol. 161, no. July, p. 106274,
, doi: 10.1016/j.buildenv.2019.106274.
N. S. M. Shahid, M. A. Ahmad*, and F. L. Md Tahir,
“Sound Absorption Coefficient of Different Green Materials
Polymer on Noise Reduction,” Int. J. Innov. Technol. Explor.
Eng., vol. 9, no. 3, pp. 2773–2777, 2020, doi:
35940/ijitee.c9208.019320.
A. Putra, K. H. Or, M. Z. Selamat, M. J. M. Nor, M. H.
Hassan, and I. Prasetiyo, “Sound absorption of extracted
pineapple-leaf fibres,” Appl. Acoust., vol. 136, no. November
, pp. 9–15, 2018, doi: 10.1016/j.apacoust.2018.01.029.
H. R. Khaidar, I. D. Faryuni, and A. Asri, “Analisis
Kekuatan Tarik Serat Bundung (Scirpus grossus) Dengan
Variasi Perlakuan Alkali,” Prism. Fis., vol. 7, no. 3, p. 246,
, doi: 10.26418/pf.v7i3.37675.
R. del Rey, A. Uris, J. Alba, and P. Candelas,
“Characterization of sheep wool as a sustainable material for
acoustic applications,” Materials (Basel)., vol. 10, no. 11,
, doi: 10.3390/ma10111277.
M. Vasina, K. Monkova, P. P. Monka, D. Kozak, and J.
Tkac, “Study of the sound absorption properties of 3Dprinted open-porous ABS material structures,” Polymers
(Basel)., vol. 12, no. 5, 2020, doi:
3390/POLYM12051062.
P. Soltani, E. Taban, M. Faridan, S. E. Samaei, and S.
Amininasab, “Experimental and computational investigation
of sound absorption performance of sustainable porous
material: Yucca Gloriosa fiber,” Appl. Acoust., vol. 157, p.
, 2020, doi: 10.1016/j.apacoust.2019.106999.
B. Dwisetyo et al., “Implementation of Sound Absorption
Measurement Based on ISO and ASTM Standards in BSN,”
Pertem. dan Present. Ilm. Stand., vol. 2020, pp. 27–34, 2021,
doi: 10.31153/ppis.2020.50.
ISO 11654:1997, “Acoustics : sound absorbers for use in
buildings : rating of sound absorption,” p. 7, 1997.
DOI: http://dx.doi.org/10.30811/jpl.v22i4.5245
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .
Alamat Surat :
Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia