The investigation of the properties of filaments fabricated from carbon biomass and LLDPE
Abstract
This study aims to develop composites using electrically conductive carbon and polymer polyethylene (LLDPE) to enhance electrical conductivity. Investigations have been conducted on the fabrication of electrically conductive composites and the modulus of elasticity through heat compaction using mixtures of carbon-LLDPE powders. Heat compaction is performed at temperatures ranging from 120°C to 150°C, with varying composition ratios of carbon-LLDPE, including 50:50, 60:40, and 70:30 % wt. Higher proportions of carbon and compaction temperatures are correlated with increased electrical conductivity. For instance, the C7-3LLDPE composite, compacted at 150°C, demonstrates the highest electrical current flow of 0.0018 A, whereas the C5-5LLDPE composite, compacted at 135°C, exhibits the lowest current flow at 0.0000638 A. Regarding the modulus of elasticity, the composition ratio of C7-3LLDPE, compacted at 120°C, achieves the highest value at 2686.43 [N/mm2 ]. Conversely, the composition ratio of C5-5LLDPE, compacted at 135°C, yields the lowest modulus of elasticity at 1530.94 [N/mm2 ]. Elasticity modulus testing follows the ASTM D638 standard, with a speed of 2 mm/min. It is observed that increasing the compaction temperature results in a decreased modulus of elasticity across all composition ratios. Furthermore, a higher carbon content within the composite corresponds to a higher modulus of elasticity, regardless of the compaction temperature.
Keywords
Full Text:
PDFReferences
L. Liang, X. Wang, M. Wang, Z. Liu, G. Chen, and G. Sun,
“Flexible poly(3,4-ethylenedioxythiophene)-
tosylate/SWCNT composite films with ultrahigh electrical
conductivity for thermoelectric energy harvesting,” Compos.
Commun., vol. 25, no. February, p. 100701, 2021, doi:
1016/j.coco.2021.100701.
X. Jiang et al., “Flexible conductive polymer composite
materials based on strutted graphene foam,” Compos.
Commun., vol. 25, no. February, p. 100757, 2021, doi:
1016/j.coco.2021.100757.
Y. Sun et al., “Fabrication of high thermal and electrical
conductivity composites via electroplating Cu network on 3D
Disseminating Information on the Research of Mechanical Engineering - Jurnal Polimesin Volume 22, No. 4, August 2024 415
PEEK/CF felt skeletons,” Compos. Commun., vol. 28, no.
August, p. 100909, 2021, doi: 10.1016/j.coco.2021.100909.
X. Luo, M. Qu, and D. W. Schubert, “Electrical conductivity
and fiber orientation of poly(methyl methacrylate)/carbon
fiber composite sheets with various thickness,” Polym.
Compos., vol. 42, no. 2, pp. 548–558, 2021, doi:
1002/pc.25846.
F. Zou, J. Chen, X. Liao, P. Song, and G. Li, “Efficient
electrical conductivity and electromagnetic interference
shielding performance of double percolated polymer
composite foams by phase coarsening in supercritical CO2,”
Compos. Sci. Technol., vol. 213, no. February, p. 108895,
, doi: 10.1016/j.compscitech.2021.108895.
B. G. Cho, J. E. Lee, S. H. Hwang, J. H. Han, H. G. Chae,
and Y. Bin Park, “Enhancement in mechanical properties of
polyamide 66-carbon fiber composites containing graphene
oxide-carbon nanotube hybrid nanofillers synthesized
through in situ interfacial polymerization,” Compos. Part A
Appl. Sci. Manuf., vol. 135, no. May, p. 105938, 2020, doi:
1016/j.compositesa.2020.105938.
E. dal Lago, E. Cagnin, C. Boaretti, M. Roso, A. Lorenzetti,
and M. Modesti, “Influence of different carbon-based fillers
on electrical and mechanical properties of a PC/ABS blend,”
Polymers (Basel)., vol. 12, no. 1, 2020, doi:
3390/polym12010029.
M. Razavi-Nouri, F. Saeedi, and F. Ziaee, “Rheological
behavior, electrical conductivity, and morphology of multiwalled carbon nanotube filled poly(ethylene-co-vinyl
acetate)/poly(methyl methacrylate) nanocomposites: Effect
of nanofiller content,” Polym. Compos., vol. 42, no. 5, pp.
–2251, 2021, doi: 10.1002/pc.25973.
H. Aguilar-Bolados et al., “Synthesis of sustainable,
lightweight and electrically conductive polymer brushes
grafted multi-layer graphene oxide,” Polym. Test., vol. 93,
no. July 2020, pp. 0–8, 2021, doi:
1016/j.polymertesting.2020.106986.
A. M. dos Santos, C. Merlini, S. D. A. S. Ramôa, and G. M.
O. Barra, “Comparative study of electrically conductive
polymer composites of polyester-based thermoplastic
polyurethane matrix with polypyrrole and
montmorillonite/polypyrrole additive,” Polym. Compos., vol.
, no. 5, pp. 2003–2012, 2020, doi: 10.1002/pc.25515.
G. Wang et al., “Influence of the filler dimensionality on the
electrical, mechanical and electromagnetic shielding
properties of isoprene rubber-based flexible conductive
composites,” Compos. Commun., vol. 21, no. July, p.
, 2020, doi: 10.1016/j.coco.2020.100417.
Z. Starý and J. Krückel, “Conductive polymer composites
with carbonic fillers: Shear induced electrical behaviour,”
Polymer (Guildf)., vol. 139, pp. 52–59, 2018, doi:
1016/j.polymer.2018.02.008.
C. Merlini, G. M. O. Barra, M. D. P. P. da Cunha, S. D. A. S.
Ramoa, B. G. Soares, and A. Pegoretti, “Electrically
Conductive Composites of Polyurethane Derived From
Castor Oil With Polypyrrole-Coated Peach Palm Fibers,”
Polym. Polym. Compos., vol. 38, no. 10, pp. 2146–2155,
, doi: doi.org/10.1002/pc.23790.
J. A. King, R. L. Barton, R. A. Hauser, and J. M. Keith,
“Synergistic Effects of Carbon Fillers in Electrically and
Thermally Conductive Liquid Crystal Polymer Based
Resins,” Polym. Compos., vol. 29, no. 4, pp. 421–428, 2008,
doi: doi.org/10.1002/pc.20446.
N. A. Mohd Radzuan, M. Yusuf Zakaria, A. B. Sulong, and
J. Sahari, “The effect of milled carbon fibre filler on
electrical conductivity in highly conductive polymer
composites,” Compos. Part B Eng., vol. 110, pp. 153–160,
, doi: 10.1016/j.compositesb.2016.11.021.
A. Zuhri, A. E. Pramono, I. Setyadi, A. Maksum, and N.
Indayaningsih, “Effect of microcarbon particle size and
dispersion on the electrical conductivity of LLDPE-carbon
composite,” J. Appl. Res. Technol., vol. 13, pp. 374–381,
, doi: doi.org/10.22201/icat.24486736e.2024.22.1.2215.
A. E. Pramono, Y. Patrickr, and N. Indayaningsih, “The
electrical properties of composite fabricated of carbonphenol formaldehyde,” Recent Eng. Sci. Technol., vol. 01,
no. 04, pp. 1–10, 2023, doi:
https://doi.org/10.59511/riestech.v1i04.29.
R. Sherman et al., “Electro-mechanical characterization of
three-dimensionally conductive graphite/epoxy composites
under tensile and shear loading,” Compos. Commun., vol. 15,
no. October 2018, pp. 30–33, 2019, doi:
1016/j.coco.2019.05.010.
J. Narongthong, H. H. Le, A. Das, C. Sirisinha, and S.
Wießner, “Ionic liquid enabled electrical-strain tuning
capability of carbon black based conductive polymer
composites for small-strain sensors and stretchable
conductors,” Compos. Sci. Technol., vol. 174, pp. 202–211,
, doi: 10.1016/j.compscitech.2019.03.002.
J. Jang et al., “Enhanced electrical and electromagnetic
interference shielding properties of uniformly dispersed
carbon nanotubes filled composite films via solvent-free
process using ring-opening polymerization of cyclic butylene
terephthalate,” Polymer (Guildf)., no. August, p. 122030,
, doi: 10.1016/j.polymer.2019.122030.
A. Alam and M. Moussa, “Preparation of
graphene/poly(vinyl alcohol) composite hydrogel films with
enhanced electrical and mechanical properties,” Polym.
Compos., vol. 41, no. 3, pp. 809–816, 2020, doi:
1002/pc.25411.
Julia A. King, J. M. Keith, R. C. Smith, and F. A. Morrison,
“Electrical Conductivity and Rheology of Carbon Fiber/
Liquid Crystal Polymer Composites,” Polym. Compos., vol.
, no. 2, pp. 101–113, 2007, doi: 10.1002/pc.
D. Mi, X. Li, Z. Zhao, Z. Jia, and W. Zhu, “Effect of
dispersion and orientation of dispersed phase on mechanical
and electrical conductivity,” Polym. Compos., vol. 42, no. 9,
pp. 4277–4288, 2021, doi: 10.1002/pc.26145.
G. Pinto, A.-K. Maaroufi, R. Benavente, and J. M. Perena,
“Electrical Conductivity of Urea–Formaldehyde–Cellulose
Composites Loaded with Copper,” Polym. Compos., vol. 32,
no. 2, pp. 193–198, 2011, doi: 10.1002/pc.
W. Lu, Q. Luo, S. Yin, X. Wu, and C. Y. Guo, “Anilinepyrrole Copolymer/SWCNT thermoelectric composites from
electrochemical polymerization,” Compos. Commun., vol.
, no. July, p. 100860, 2021, doi:
1016/j.coco.2021.100860.
DOI: http://dx.doi.org/10.30811/jpl.v22i4.5084
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .
Alamat Surat :
Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia