The investigation of the properties of filaments fabricated from carbon biomass and LLDPE

Agus Edy Pramono, Yohannes Patrick, Aminudin Zuhri, Iman Setiyadi, Ahmad Maksum, Nanik Indayaningsih, Subyakto Subyakto

Abstract


This study aims to develop composites using electrically conductive carbon and polymer polyethylene (LLDPE) to enhance electrical conductivity. Investigations have been conducted on the fabrication of electrically conductive composites and the modulus of elasticity through heat compaction using mixtures of carbon-LLDPE powders. Heat compaction is performed at temperatures ranging from 120°C to 150°C, with varying composition ratios of carbon-LLDPE, including 50:50, 60:40, and 70:30 % wt. Higher proportions of carbon and compaction temperatures are correlated with increased electrical conductivity. For instance, the C7-3LLDPE composite, compacted at 150°C, demonstrates the highest electrical current flow of 0.0018 A, whereas the C5-5LLDPE composite, compacted at 135°C, exhibits the lowest current flow at 0.0000638 A. Regarding the modulus of elasticity, the composition ratio of C7-3LLDPE, compacted at 120°C, achieves the highest value at 2686.43 [N/mm2 ]. Conversely, the composition ratio of C5-5LLDPE, compacted at 135°C, yields the lowest modulus of elasticity at 1530.94 [N/mm2 ]. Elasticity modulus testing follows the ASTM D638 standard, with a speed of 2 mm/min. It is observed that increasing the compaction temperature results in a decreased modulus of elasticity across all composition ratios. Furthermore, a higher carbon content within the composite corresponds to a higher modulus of elasticity, regardless of the compaction temperature.


Keywords


Carbon-LLDPE composite, electrically conductive, heat compaction, modulus of elasticity, rice husks carbon.

Full Text:

PDF

References


L. Liang, X. Wang, M. Wang, Z. Liu, G. Chen, and G. Sun,

“Flexible poly(3,4-ethylenedioxythiophene)-

tosylate/SWCNT composite films with ultrahigh electrical

conductivity for thermoelectric energy harvesting,” Compos.

Commun., vol. 25, no. February, p. 100701, 2021, doi:

1016/j.coco.2021.100701.

X. Jiang et al., “Flexible conductive polymer composite

materials based on strutted graphene foam,” Compos.

Commun., vol. 25, no. February, p. 100757, 2021, doi:

1016/j.coco.2021.100757.

Y. Sun et al., “Fabrication of high thermal and electrical

conductivity composites via electroplating Cu network on 3D

Disseminating Information on the Research of Mechanical Engineering - Jurnal Polimesin Volume 22, No. 4, August 2024 415

PEEK/CF felt skeletons,” Compos. Commun., vol. 28, no.

August, p. 100909, 2021, doi: 10.1016/j.coco.2021.100909.

X. Luo, M. Qu, and D. W. Schubert, “Electrical conductivity

and fiber orientation of poly(methyl methacrylate)/carbon

fiber composite sheets with various thickness,” Polym.

Compos., vol. 42, no. 2, pp. 548–558, 2021, doi:

1002/pc.25846.

F. Zou, J. Chen, X. Liao, P. Song, and G. Li, “Efficient

electrical conductivity and electromagnetic interference

shielding performance of double percolated polymer

composite foams by phase coarsening in supercritical CO2,”

Compos. Sci. Technol., vol. 213, no. February, p. 108895,

, doi: 10.1016/j.compscitech.2021.108895.

B. G. Cho, J. E. Lee, S. H. Hwang, J. H. Han, H. G. Chae,

and Y. Bin Park, “Enhancement in mechanical properties of

polyamide 66-carbon fiber composites containing graphene

oxide-carbon nanotube hybrid nanofillers synthesized

through in situ interfacial polymerization,” Compos. Part A

Appl. Sci. Manuf., vol. 135, no. May, p. 105938, 2020, doi:

1016/j.compositesa.2020.105938.

E. dal Lago, E. Cagnin, C. Boaretti, M. Roso, A. Lorenzetti,

and M. Modesti, “Influence of different carbon-based fillers

on electrical and mechanical properties of a PC/ABS blend,”

Polymers (Basel)., vol. 12, no. 1, 2020, doi:

3390/polym12010029.

M. Razavi-Nouri, F. Saeedi, and F. Ziaee, “Rheological

behavior, electrical conductivity, and morphology of multiwalled carbon nanotube filled poly(ethylene-co-vinyl

acetate)/poly(methyl methacrylate) nanocomposites: Effect

of nanofiller content,” Polym. Compos., vol. 42, no. 5, pp.

–2251, 2021, doi: 10.1002/pc.25973.

H. Aguilar-Bolados et al., “Synthesis of sustainable,

lightweight and electrically conductive polymer brushes

grafted multi-layer graphene oxide,” Polym. Test., vol. 93,

no. July 2020, pp. 0–8, 2021, doi:

1016/j.polymertesting.2020.106986.

A. M. dos Santos, C. Merlini, S. D. A. S. Ramôa, and G. M.

O. Barra, “Comparative study of electrically conductive

polymer composites of polyester-based thermoplastic

polyurethane matrix with polypyrrole and

montmorillonite/polypyrrole additive,” Polym. Compos., vol.

, no. 5, pp. 2003–2012, 2020, doi: 10.1002/pc.25515.

G. Wang et al., “Influence of the filler dimensionality on the

electrical, mechanical and electromagnetic shielding

properties of isoprene rubber-based flexible conductive

composites,” Compos. Commun., vol. 21, no. July, p.

, 2020, doi: 10.1016/j.coco.2020.100417.

Z. Starý and J. Krückel, “Conductive polymer composites

with carbonic fillers: Shear induced electrical behaviour,”

Polymer (Guildf)., vol. 139, pp. 52–59, 2018, doi:

1016/j.polymer.2018.02.008.

C. Merlini, G. M. O. Barra, M. D. P. P. da Cunha, S. D. A. S.

Ramoa, B. G. Soares, and A. Pegoretti, “Electrically

Conductive Composites of Polyurethane Derived From

Castor Oil With Polypyrrole-Coated Peach Palm Fibers,”

Polym. Polym. Compos., vol. 38, no. 10, pp. 2146–2155,

, doi: doi.org/10.1002/pc.23790.

J. A. King, R. L. Barton, R. A. Hauser, and J. M. Keith,

“Synergistic Effects of Carbon Fillers in Electrically and

Thermally Conductive Liquid Crystal Polymer Based

Resins,” Polym. Compos., vol. 29, no. 4, pp. 421–428, 2008,

doi: doi.org/10.1002/pc.20446.

N. A. Mohd Radzuan, M. Yusuf Zakaria, A. B. Sulong, and

J. Sahari, “The effect of milled carbon fibre filler on

electrical conductivity in highly conductive polymer

composites,” Compos. Part B Eng., vol. 110, pp. 153–160,

, doi: 10.1016/j.compositesb.2016.11.021.

A. Zuhri, A. E. Pramono, I. Setyadi, A. Maksum, and N.

Indayaningsih, “Effect of microcarbon particle size and

dispersion on the electrical conductivity of LLDPE-carbon

composite,” J. Appl. Res. Technol., vol. 13, pp. 374–381,

, doi: doi.org/10.22201/icat.24486736e.2024.22.1.2215.

A. E. Pramono, Y. Patrickr, and N. Indayaningsih, “The

electrical properties of composite fabricated of carbonphenol formaldehyde,” Recent Eng. Sci. Technol., vol. 01,

no. 04, pp. 1–10, 2023, doi:

https://doi.org/10.59511/riestech.v1i04.29.

R. Sherman et al., “Electro-mechanical characterization of

three-dimensionally conductive graphite/epoxy composites

under tensile and shear loading,” Compos. Commun., vol. 15,

no. October 2018, pp. 30–33, 2019, doi:

1016/j.coco.2019.05.010.

J. Narongthong, H. H. Le, A. Das, C. Sirisinha, and S.

Wießner, “Ionic liquid enabled electrical-strain tuning

capability of carbon black based conductive polymer

composites for small-strain sensors and stretchable

conductors,” Compos. Sci. Technol., vol. 174, pp. 202–211,

, doi: 10.1016/j.compscitech.2019.03.002.

J. Jang et al., “Enhanced electrical and electromagnetic

interference shielding properties of uniformly dispersed

carbon nanotubes filled composite films via solvent-free

process using ring-opening polymerization of cyclic butylene

terephthalate,” Polymer (Guildf)., no. August, p. 122030,

, doi: 10.1016/j.polymer.2019.122030.

A. Alam and M. Moussa, “Preparation of

graphene/poly(vinyl alcohol) composite hydrogel films with

enhanced electrical and mechanical properties,” Polym.

Compos., vol. 41, no. 3, pp. 809–816, 2020, doi:

1002/pc.25411.

Julia A. King, J. M. Keith, R. C. Smith, and F. A. Morrison,

“Electrical Conductivity and Rheology of Carbon Fiber/

Liquid Crystal Polymer Composites,” Polym. Compos., vol.

, no. 2, pp. 101–113, 2007, doi: 10.1002/pc.

D. Mi, X. Li, Z. Zhao, Z. Jia, and W. Zhu, “Effect of

dispersion and orientation of dispersed phase on mechanical

and electrical conductivity,” Polym. Compos., vol. 42, no. 9,

pp. 4277–4288, 2021, doi: 10.1002/pc.26145.

G. Pinto, A.-K. Maaroufi, R. Benavente, and J. M. Perena,

“Electrical Conductivity of Urea–Formaldehyde–Cellulose

Composites Loaded with Copper,” Polym. Compos., vol. 32,

no. 2, pp. 193–198, 2011, doi: 10.1002/pc.

W. Lu, Q. Luo, S. Yin, X. Wu, and C. Y. Guo, “Anilinepyrrole Copolymer/SWCNT thermoelectric composites from

electrochemical polymerization,” Compos. Commun., vol.

, no. July, p. 100860, 2021, doi:

1016/j.coco.2021.100860.




DOI: http://dx.doi.org/10.30811/jpl.v22i4.5084

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .

 

Alamat Surat :

Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia