Investigating the effects of partitioning temperature fluctuations on the mechanical properties of ASTM A36 carbon steel using Q-P-T heat treatment: an experimental study

Alief Muhammad, Mochamad Fani Nur Umri, Muhammad Fathuddin Noor, Dani Hari Tunggal Prasetyo, Indah Noor Dwi Kusuma Dewi, Angga Prasmana, Mas Ahmad Baihaqi, Hartawan Abdillah

Abstract


In the continuum of time and technological advancement, the use of metals, specifically carbon steel, has significantly increased as primary materials in various operational and industrial domains, including tool fabrication and automotive components. To meet the evolving demands of industries, precise heat treatment processes have been developed to enhance the metallic properties. This study specifically focused on the application of the Quenching-Partitioning-Tempering (Q-P-T) method to ASTM A36 steel. The study investigated different partitioning temperatures, namely 300℃, 350℃, and 400℃, with 15-minute intervals. A comprehensive set of mechanical tests, including hardness, tensile, and microstructural analyses, were conducted to assess the response of the material to the treatment. The results reveal significant findings: a partitioning temperature of 300℃ yields the highest hardness value of 164 Vickers Hardness Number (VHN). Furthermore, the tensile tests demonstrate that a partitioning temperature of 300℃ is optimal, achieving a maximum stress value of 515.73 MPa. Conversely, a partitioning temperature of 400℃ exhibits the highest strain value at 21.08% and the highest elastic modulus value at 11.47 GPa. Microstructural evaluations highlighted the presence of pearlite and ferrite phases, with the partitioning temperature of 300°C displaying the highest proportion of pearlite phase at 38.5%. This meticulous investigation expands our understanding of metallurgy and underscores the intricate relationship between partitioning temperatures and the mechanical properties of ASTM A36 steel. It provides valuable insights for material design and application methodologies and facilitates advancements in industrial practices


Keywords


ASTM A36, heat treatment, mechanical testing, Q-P-T.

Full Text:

PDF

References


D. Chatterjee, “Behind the Development of Advanced High Strength Steel (AHSS) Including Stainless Steel for Automotive and Structural Applications-An Overview,” Mater. Sci. Metall. Eng., vol. 4, no. 1, pp. 1–15, 2017, doi: 10.12691/msme-4-1-1.

M. Carpio, J. Calvo, O. García, J. P. Pedraza, and J. M. Cabrera, “Heat Treatment Design for a QP Steel: Effect of Partitioning Temperature,” Metals, vol. 11, no. 7. 2021. doi: 10.3390/met11071136.

A. Inam et al., “Effect of Tempering Time on Microstructure, Mechanical, and Electrochemical Properties of Quenched-Partitioned-Tempered Advanced High Strength Steel (AHSS),” Mater. Res. Express, vol. 6, no. 12, 2019, doi: 10.1088/2053-1591/ab52b7.

A. Wisnujati and J. Andryansyah, “Analysis Of Mechanical Properties SMAW (Shielded Metal Arc Welding) Welding Joints Of Portable Electric Hydraulic Jack Frame,” INTEK J. Penelit., vol. 7, no. 2, p. 155, 2021, doi: 10.31963/intek.v7i2.2134.

Munawar, H. Abbas, and A. Y. Aminy, “The Effects of Shielded Metal Arc Welding (Smaw) Welding on the Mechanical Characteristics with Heating Treatment inn S45c Steel,” J. Phys. Conf. Ser., vol. 962, no. 1, 2018, doi: 10.1088/1742-6596/962/1/012063.

Y. Peng, C. Liu, and N. Wang, “Effect of Deformation on Microstructure and Mechanical Properties of Medium Carbon Steel During Heat Treatment Process,” Chinese J. Mech. Eng. (English Ed., vol. 34, no. 1, 2021, doi: 10.1186/s10033-021-00634-8.

V. D. Kodgire and S. V. Kodgire, Material Science and Metallurgy. Everest Publishing House, 2018.

Z. Huda, Metallurgy for Physicists and Engineers Fundamentals, Applications, and Calculations, 1st Editio. CRC Press, 2020. doi: https://doi.org/10.1201/9780429265587.

A. Kmita, A. Pribulova, M. Holtzer, P. Futas, and A. Roczniak, “Use of Specific Properties of Zinc Ferrite in Innovative Technologies,” Arch. Metall. Mater., vol. 61, no. 4, pp. 2141–2146, 2016, doi: 10.1515/amm-2016-0289.

H. Liu, S. Dhawan, M. Shen, K. Chen, V. Wu, and L. Wang, “Industry 4.0 in Metal Forming Industry Towards Automotive Applications: A Review,” Int. J. Automot. Manuf. Mater., vol. 1, Dec. 2022, doi: 10.53941/ijamm0101002.

M. Phagare, “Metal Heat Treatment Market Report 2024 (Global Edition),” 2023.

A. Nugroho and E. Setiawan, “Pengaruh Variasi Kuat Arus Pengelasan Terhadap Kekuatan Tarik Dan Kekerasan Sambungan Las Plate Carbon Steel ASTM 36,” J. Rekayasa Sist. Ind., vol. 3, no. 2, pp. 134–142, 2018.

K. Buranapunviwat and K. Sojiphan, “Destructive testing and hardness measurement of resistance stud welded joints of ASTM A36 steel,” Mater. Today Proc., vol. 47, pp. 3565–3569, 2021, doi: https://doi.org/10.1016/j.matpr.2021.03.562.

P. Singh, G. Saini, A. Singh, and L. Singh, “Process performance characteristics evaluation on the EDM of ASTM A36 steel,” Mater. Today Proc., 2023, doi: https://doi.org/10.1016/j.matpr.2023.01.160.

S. Senthilkumar, S. Manivannan, R. Venkatesh, and M. Karthikeyan, “Influence of heat input on the mechanical characteristics, corrosion and microstructure of ASTM A36 steel welded by GTAW technique,” Heliyon, vol. 9, no. 9, p. e19708, 2023, doi: https://doi.org/10.1016/j.heliyon.2023.e19708.

H. U. Sajid and R. Kiran, “Influence of stress concentration and cooling methods on post-fire mechanical behavior of ASTM A36 steels,” Constr. Build. Mater., vol. 186, pp. 920–945, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.08.006.

H. U. Sajid and R. Kiran, “Influence of corrosion and surface roughness on wettability of ASTM A36 steels,” J. Constr. Steel Res., vol. 144, pp. 310–326, 2018, doi: https://doi.org/10.1016/j.jcsr.2018.01.023.

H. U. Sajid and R. Kiran, “Influence of high stress triaxiality on mechanical strength of ASTM A36, ASTM A572 and ASTM A992 steels,” Constr. Build. Mater., vol. 176, pp. 129–134, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.05.018.

A. Goenaga-Villanueva et al., “Influence of heat treatments applied on the microstructural and microhardness behavior of ASTM A131 ABS DH36 steel,” Ain Shams Eng. J., p. 102687, 2024, doi: https://doi.org/10.1016/j.asej.2024.102687.

M. Alagheband and M. Ghanbari, “Experimental investigation on the effect of heat treatment parameters on the mechanical and microstructural properties of an ASTM A860 WPHY 65 pipe fitting,” Results Mater., vol. 19, p. 100435, 2023, doi: https://doi.org/10.1016/j.rinma.2023.100435.

T. Sonar et al., “Effect of post weld heat treatment on weld metal microstructure and hardness of HFCA-TIG welded ASTM-B670 high temperature alloy joints,” J. Alloy. Metall. Syst., vol. 3, p. 100025, 2023, doi: https://doi.org/10.1016/j.jalmes.2023.100025.

M. Martins and L. C. Casteletti, “Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure,” Mater. Charact., vol. 55, no. 3, pp. 225–233, 2005, doi: https://doi.org/10.1016/j.matchar.2005.05.008.

A. Karivaratharajan and B. Raha, “Effect of various heat treatment processes on microstructural evolution and properties of cast austenitic stainless steel of ASTM A351 grade CF8C,” Mater. Today Proc., vol. 49, pp. 418–424, 2022, doi: https://doi.org/10.1016/j.matpr.2021.02.388.

N. Z. Khan, S. S. U. Islam, M. M. Khan, and A. N. B. T.-R. M. in M. S. and M. E. Siddiquee, “Steel heat treatment: Equipment and process design,” Elsevier, 2024. doi: https://doi.org/10.1016/B978-0-323-96020-5.00249-1.

K. Zhang, M. Zhu, B. Lan, P. Liu, W. Li, and Y. Rong, “The Mechanism of High-Strength Quenching-Partitioning-Tempering Martensitic Steel at Elevated Temperatures,” Crystals, vol. 9, no. 2, 2019, doi: 10.3390/cryst9020094.

Y. Zhang et al., “The Correlation Analysis of Microstructure and Tribological Characteristics of In Situ VCp Reinforced Iron-Based Composite.,” Mater. (Basel, Switzerland), vol. 14, no. 15, Aug. 2021, doi: 10.3390/ma14154343.

Y. Rong, “Quenching–Partitioning–Tempering (Q–P–T) Process and its Combination of Other Processes,” Heat Treat. Surf. Eng., vol. 1, no. 1–2, 2019, doi: 10.1080/25787616.2018.1560129.

D. S. Smith, K. D. Clarke, and A. J. Clarke, “Leveraging chemical heterogeneity in steels heat treated to retain metastable austenite,” Scr. Mater., vol. 238, p. 115717, 2024, doi: https://doi.org/10.1016/j.scriptamat.2023.115717.

C. Iván et al., “Effect of Thickness on Magnetic Dipolar and Exchange Interactions in SmCo / FeCo / SmCo Thin Films,” Adv. Mater. Phys. Chem., vol. 5, no. 9, 2015, doi: 10.4236/ampc.2015.59037.

G. Y. Li, M. T. Ma, X. P. Mao, and C. X. Zhao, “New Process of Hot Stamping in Combination with Q-P-T Treatment for Higher Strength-Ductility Auto-Parts,” Adv. Mater. Res., vol. 1063, pp. 223–231, 2015, doi: 10.4028/www.scientific.net/AMR.1063.223.

A. K. Singh, D. K. Chouhan, B. Bhattacharya, and S. Biswas, “High strength-ductility combination by quenching and partitioning of a low carbon microalloyed dual-phase steel,” Mater. Sci. Eng. A, vol. 870, p. 144854, 2023, doi: https://doi.org/10.1016/j.msea.2023.144854.

D. Dong, H. Li, K. Shan, X. Jia, and L. Li, “Effects of Different Heat Treatment Process on Mechanical Properties and Microstructure of Q690 Steel Plate,” IOP Conf. Ser. Mater. Sci. Eng., vol. 394, no. 2, pp. 0–6, 2018, doi: 10.1088/1757-899X/394/2/022017.

G. Y. Li, M. T. Ma, X. P. Mao, and C. X. Zhao, “New Process of Hot Stamping in Combination with Q-P-T Treatment for Higher Strength-Ductility Auto-Parts,” Adv. Mater. Res., vol. 1063, pp. 223–231, 2015, doi: 10.4028/www.scientific.net/AMR.1063.223.

Z. li Tan, K. kai Wang, G. hui Gao, X. lu Gui, B. zhe Bai, and Y. qing Weng, “Mechanical Properties of Steels Treated by Q-P-T Process Incorporating Carbide-Free-Bainite/Martensite Multiphase Microstructure,” J. Iron Steel Res. Int., vol. 21, no. 2, pp. 191–196, 2014, doi: 10.1016/S1006-706X(14)60029-7.

S. Qin et al., “Approach and Mechanism of Toughness Enhancement for a High Carbon Q-P-T Steel,” Heat Treat. Surf. Eng., vol. 1, no. 1–2, pp. 11–16, 2019, doi: 10.1080/25787616.2018.1560160.

Y. Rong and N. Chen, “Multi-cycle quenching-partitioning-tempering (M Q-P-T) technique,” 2013

J. Pelleg, Mechanical Properties of Materials, 1st ed. Springer Dordrecht, 2012. doi: https://doi.org/10.1007/978-94-007-4342-7.

A. Bhaduri, Mechanical Properties and Working of Metals and Alloys. Springer Singapore, 2018. doi: https://doi.org/10.1007/978-981-10-7209-3.

Y. Li et al., “Investigation of hierarchical precipitation on bimodal-grained austenite and mechanical properties in quenching-partitioning-tempering steel,” Mater. Sci. Eng. A, vol. 781, p. 139207, 2020, doi: https://doi.org/10.1016/j.msea.2020.139207.

X. Liu et al., “Effect of tempering temperature on microstructure and mechanical properties of a low carbon bainitic steel treated by quenching-partitioning-tempering (QPT) process,” J. Mater. Res. Technol., vol. 23, pp. 911–918, 2023, doi: https://doi.org/10.1016/j.jmrt.2023.01.061.

J. Zhang et al., “Revealing Carbide Precipitation Effects and Their Mechanisms During Quenching-Partitioning-Tempering of a High Carbon Steel: Experiments and Modeling,” Acta Mater., vol. 217, p. 117176, 2021, doi: 10.1016/j.actamat.2021.117176.

P. Xu, C. Li, W. Li, M. Zhu, W. Li, and K. Zhang, “Effect of microstructure on hydrogen embrittlement susceptibility in quenching-partitioning-tempering steel,” Mater. Sci. Eng. A, vol. 831, p. 142046, 2022, doi: https://doi.org/10.1016/j.msea.2021.142046.

E. Tkachev, S. Borisov, Y. Borisova, T. Kniaziuk, A. Belyakov, and R. Kaibyshev, “Austenite stabilization and precipitation of carbides during quenching and partitioning (Q&P) of low-alloyed Si–Mn steels with different carbon content,” Mater. Sci. Eng. A, vol. 895, p. 146212, 2024, doi: https://doi.org/10.1016/j.msea.2024.146212.

F. Peng, Z. Wei, F. Dai, X. Gu, W. Zhang, and Z. Wu, “Insight into austenite reversion and mechanical behavior of quenching and partitioning steel inherited hierarchical structure of martensite,” Mater. Charact., vol. 207, p. 113583, 2024, doi: https://doi.org/10.1016/j.matchar.2023.113583.

H. Zheng, J. Zhang, X. Zuo, Y. Rong, J. Wan, and N. Chen, “Multi-interface migration mechanism induced by carbide precipitation during the quenching-partitioning-tempering process in a high-carbon steel,” Int. J. Plast., vol. 175, p. 103928, 2024, doi: https://doi.org/10.1016/j.ijplas.2024.103928.

X. Wang, Y. Xu, Y. Gao, Y. Wang, and R. D. K. Misra, “Enhancing strength-ductility combination in a novel Cu–Ni bearing Q&P steel by tailoring the characteristics of fresh martensite,” J. Mater. Res. Technol., vol. 24, pp. 9015–9029, 2023, doi: https://doi.org/10.1016/j.jmrt.2023.05.153.

J. Li et al., “Improving the strength-ductility balance of medium-Mn Q&P steel by controlling cold-worked ferrite microstructure,” Mater. Charact., vol. 205, p. 113377, 2023, doi: https://doi.org/10.1016/j.matchar.2023.113377.

Y. Z. Zeng, K. M. Wu, F. Hu, and H. Zheng, “Effect of Partitioning of Quenching-Partitioning-Tempering Process on Microstructures and Hardness in High Carbon Steels,” Adv. Mater. Res., vol. 538–541, pp. 1053–1056, 2012, doi: 10.4028/www.scientific.net/AMR.538-541.1053.

T. Y. Hsu, X. J. Jin, and Y. H. Rong, “Strengthening and Toughening Mechanisms of Quenching-Partitioning-Tempering (Q-P-T) Steels,” J. Alloys Compd., vol. 577, no. SUPPL. 1, pp. S568–S571, 2013, doi: 10.1016/j.jallcom.2012.02.016.

Z. Zhang, S. Hou, H. Wang, D. Zhang, and J. Zhang, “Achieving microstress-induced strengthening and grain refinement of crossover Al–Mg–Zn–Cu alloy via deformation-induced precipitation of multiscale T-phase Mg32(Al Zn Cu)49,” J. Alloys Compd., vol. 988, p. 174296, 2024, doi: https://doi.org/10.1016/j.jallcom.2024.174296.

Y. Liu, F. Zhao, Y. Tan, W. Huang, and M. Yang, “Optimizing austenite and carbide content in medium carbon silicon-rich steel: A stepped partitioning strategy and analysis of strengthening and ductility enhancement mechanisms,” Mater. Sci. Eng. A, vol. 896, p. 146248, 2024, doi: https://doi.org/10.1016/j.msea.2024.146248.

Y. Li, E. Wang, L. Zhang, B. Ma, J. Du, and S. Zhang, “High strength and high ductility of 60Si2CrVAT spring steel through a novel quenching and partitioning (Q-P) process,” Mater. Sci. Eng. A, vol. 899, p. 146444, 2024, doi: https://doi.org/10.1016/j.msea.2024.146444.

H. U. Sajid and R. Kiran, “Influence of high stress triaxiality on mechanical strength of ASTM A36, ASTM A572 and ASTM A992 steels,” Constr. Build. Mater., vol. 176, pp. 129–134, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.05.018.

D. S. Smith, K. D. Clarke, and A. J. Clarke, “Leveraging chemical heterogeneity in steels heat treated to retain metastable austenite,” Scr. Mater., vol. 238, p. 115717, 2024, doi: https://doi.org/10.1016/j.scriptamat.2023.115717.

F. G. Caballero, M. K. Miller, and C. Capdevila, “Phase Transformation Theory : Advanced Steels,” Solid State Phase Transform., vol. 60, no. 12, pp. 16–21, 2008.

A. K. Singh, D. K. Chouhan, B. Bhattacharya, and S. Biswas, “High strength-ductility combination by quenching and partitioning of a low carbon microalloyed dual-phase steel,” Mater. Sci. Eng. A, vol. 870, p. 144854, 2023, doi: https://doi.org/10.1016/j.msea.2023.144854.




DOI: http://dx.doi.org/10.30811/jpl.v22i3.5007

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia