Utilization of Sengon Wood Sawdust as Bio-Pellet Feedstock: Characteristics, Potential, and Feasibility for Renewable Energy
Abstract
The pellet-making process involves stages of drying, compaction, cooling, and size separation. Considering that Indonesia has great potential for biomass supply, this research aims to identify the characteristics of bio-pellets produced from sengon wood sawdust based on the pellet standard SNI8675:2018. The results showed that the highest calorific value at the Dry Basis (DB) condition was 4703 Kcal/kg, meeting national and international standards. The moisture content in the As Received (AR) condition was recorded at 10.36%, while the lowest ash content was 1.72%. The highest combustion rate was found in sample 3, with a value of 0.174 gr/min, indicating good combustion performance. The utilization of sengon wood sawdust as bio-pellets can be an efficient and environmentally friendly renewable energy solution, and has the potential to be further developed to support diversification and national energy security.
Keywords
Full Text:
PDFReferences
Pełka, G.; Jach-Noco´ n, M.; Paprocki, M.; Jachimowski, A.;
Lubo´ n,W.; Noco´ n, A.;Wygoda, M.; Wyczesany, P.;
Pachytel, P.; Mirowski, T. Comparison of Emissions and
Efficiency of Two Types of Burners When BurningWood
Pellets from Different Suppliers. Energies 2023, 16, 1695.
https://doi.org/10.3390/en16041695
Prayudi Suparmin, Roswati Nurhasanah, Hendri Hendri &
Muhammad Ridwan (2023) Biomass for dual-fuel syngas
diesel power plants. Part I: The effect of preheating on
characteristics of the syngas gasification of municipal solid
waste and wood pellets, Arab Journal of Basic and Applied
Sciences, 30:1, 378-392, DOI:
1080/25765299.2023.2223027
B. S. Nasional, ―Pelet Biomassa Untuk Energi SNI
:2018,‖ 2018.
Dafnomilis, I., Hoefnagels, R., Pratama, Y. W., Schott, D. L.,
Lodewijks, G., & Junginger, M. (2017). Review of solid and
liquid biofuel demand and supply in Northwest Europe
towards 2030–A comparison of national and regional
projections. Renewable and Sustainable Energy Reviews,
,31–45. https://doi.org/10.1016/j.rser.2017.04.108
E. A. Nugraha, ―Karakteristik Pelet Campuran Tandan
Kosong Kelapa Sawit (Elaeis guineensis jacq.) dan Arang,‖
H. R. Prihandana R, ―Energi Hijau,‖ 2007.
M. Zamorano, V. Popov, M. L. Rodríguez, and A. GarcíaMaraver, ―A comparative study of quality properties of
pelletized agricultural and forestry lopping residues,‖ Renew.
Energy, vol. 36, no. 11, pp. 3133–3140, 2011.
R. Godina, L. J. R. Nunes, F. M. B. C. Santos, and J. C. O.
Matias, ―Logistics cost analysis between wood pellets and
torrefied Biomass Pellets: The ase of Portugal,‖ 2018 7th Int.
Conf. Ind. Technol. Manag. ICITM 2018, vol. 2018-Janua,
no. March, pp. 284–287, 2018.
E. Thiffault, J. Barrette, P. Blanchet, Q. N. Nguyen, and K.
Adjalle, ―Optimizing quality of wood pellets made of
hardwood processing residues,‖ Forests, vol. 10, no. 7, pp.
–19, 2019.
W. Wattana, S. Phetklung, W. Jakaew, S. Chumuthai, P.
Sriam, and N. Chanurai, ―Characterization of Mixed
Biomass Pellet Made from Oil Palm and Para-rubber Tree
Residues,‖ Energy Procedia, vol. 138, pp. 1128–1133, 2017.
R. Godina, L. J. R. Nunes, F. M. B. C. Santos, and J. C. O.
Matias, ―Logistics cost analysis between wood pellets and
torrefied Biomass Pellets: The ase of Portugal,‖ 2018 7th Int.
Conf. Ind. Technol. Manag. ICITM 2018, vol. 2018-Janua,
no. March, pp. 284–287, 2018.
N. K. Dien, T. T. Tho, N. V. Thanh, N. V. A. Duy, A.
Jannifar, and N. H. Tho, ―Application of topology
optimization technique in sand casting process of a complex
product based on FDM 3D printing technology,‖ vol. 19,
A. Akhyar, ―Numerical-hydrodynamic analysis, vickers
hardness, and tensile test of cast-brass alloy for boat
propellers,‖ Jurnal Polimesin, vol. 21, no. 2, Apr. 2023, doi:
30811/jpl.v21i2.3743.
J. G. Kaufman and E. L. Roy, Aluminum Alloy Castings:
Properties , Processes , and Applications. 2004.
S. Khan, A. Ourdjini, Q. S. Named, M. A. Alam Najafabadi,
and R. Elliott, ―Hardness and mechanical property
relationships in directionally solidified aluminium-silicon
eutectic alloys with different silicon morphologies,‖ Journal
of Materials Science, vol. 28, no. 21, pp. 5957–5962, 1993,
doi: 10.1007/BF00365208.
D. Masnur, Suyitno, and V. Malau, ―The Influence of Mold
Material on Cooling Curve, Solidification Parameters, and
Micro-hardness of Al–6wt .% Si in Unidirectional
No Testing Description
You can see that the dark-colored part is larger. The
lighter colored, or white parts are probably metallic
elements.
It can be seen that the bright part is wider and there are
more debris.
While dark parts appear in some places, there are also
bright parts.
No Testing Description
You can see that the dark-colored part is larger. The
lighter colored, or white parts are probably metallic
elements.
It can be seen that the bright part is wider and there are
more debris.
While dark parts appear in some places, there are also
bright parts.
No Testing Description
You can see that the dark-colored part is larger. The
lighter colored, or white parts are probably metallic
elements.
It can be seen that the bright part is wider and there are
more debris.
While dark parts appear in some places, there are also
bright parts.
Disseminating Information on the Research of Mechanical Engineering - Jurnal Polimesin Volume 22, No. 4, August 2024 395
Solidification,‖ IOP Conf. Series: Materials Science and
Engineering, vol. 547, 2019, doi: 10.1088/1757-
X/547/1/012014.
M. Farkašová, E. Tillová, and M. Chalupová, ―Modification
of Al-Si-Cu cast alloy,‖ FME Transactions, vol. 41, no. 3,
pp. 210–215, 2013.
G. Timelli, G. Camicia, and S. Ferraro, ―Effect of grain
refinement and cooling rate on the microstructure and
mechanical properties of secondary Al-Si-Cu alloys,‖
Journal of Materials Engineering and Performance, vol. 23,
no. 2, pp. 611–621, 2014, doi: 10.1007/s11665-013-0757-y.
L. Bolzoni, M. Xia, and N. H. Babu, ―Formation of equiaxed
crystal structures in directionally solidified Al-Si alloys using
Nb-based heterogeneous nuclei,‖ Nature Publishing Group,
no. December, pp. 1–10, 2016, doi: 10.1038/srep39554.
M. Nowak, L. Bolzoni, and N. Hari Babu, ―Grain refinement
of Al-Si alloys by Nb-B inoculation. Part I: Concept
development and effect on binary alloys,‖ Materials and
Design, vol. 66, no. PA, pp. 366–375, 2015, doi:
1016/j.matdes.2014.08.066.
M. Okayasu, S. Takeuchi, S. Wu, and T. Ochi, ―Effects of
Sb, Sr, and Bi on the material properties of cast Al-Si-Cu
alloys produced through heated mold continuous casting,‖
Journal of Mechanical Science and Technology, vol. 30, no.
, pp. 1139–1147, 2016, doi: 10.1007/s12206-016-0218-2.
Q. Wang, Y. X. Li, and X. C. Li, ―Grain Refinement of Al –
Si Alloys and the Efficiency Assessment by Recognition of
Cooling Curves,‖ Metallurgical and Materials Tranactions
A, vol. 34, no. May, pp. 1175–1182, 2003.
G. K. Sigworth and T. A. Kuhn, ―Grain refinement of
aluminum casting alloys,‖ International Journal of
Metalcasting, vol. 1, no. 1, pp. 31–40, 2007, doi:
1361/asmhba0005302.
Z. Fan et al., ―Grain refining mechanism in the Al / Al – Ti –
B system,‖ ACTA MATERIALIA, vol. 84, pp. 292–304, 2015,
doi: 10.1016/j.actamat.2014.10.055.
K. Kashyap and T. Chandrashekar, ―Effects and mechanisms
of grain refinement in aluminium alloys,‖ Bulletin of
Materials Science, vol. 24, no. 4, pp. 345–353, 2001, doi:
1007/BF02708630.
M. Easton and D. StJohn, ―Grain Refinement of Aluminum
Alloys : Part I . The Nucleant and Solute Paradigms — A
Review of the Literature,‖ Metallurgical and Materials
Transactions A, vol. 30, no. June, pp. 1613–1623, 1999, doi:
1007/s11661-999-0098-5.
M. Easton and D. StJohn, ―Grain refinement of aluminum
alloys: Part II. Confirmation of, and a mechanism for, the
solute paradigm,‖ Metallurgical and Materials Transactions
A, vol. 30, no. June, pp. 1625–1633, 1999, doi:
1007/s11661-999-0099-4.
M. Riestra, E. Ghassemali, T. Bogdanoff, and S. Seifeddine,
―Interactive effects of grain refinement, eutectic modification
and solidification rate on tensile properties of Al-10Si alloy,‖
Materials Science and Engineering A, vol. 703, no. July, pp.
–279, 2017, doi: 10.1016/j.msea.2017.07.074.
D. Masnur, V. Malau, and S. Suyitno, ―Composition Profile
and Microstructure Formation of Unidirectionally Solidified
Al–4.5 wt% Cu,‖ Inter Metalcast, vol. 16, no. 1, pp. 349–
, Jan. 2022, doi: 10.1007/s40962-021-00598-4.
D. Masnur, V. Malau, and S. Suyitno, ―The dependency of
the microhardnes on microstructure and solidification
parameters of directionally solidified Al–4.5wt.%Cu in clay
mold,‖ JMES, vol. 14, no. 3, pp. 7125–7131, Sep. 2020, doi:
15282/jmes.14.3.2020.13.0558.
V. Raghavan, ―Al-Cu-Si (aluminum-copper-silicon),‖
Journal of Phase Equilibria and Diffusion, vol. 33, no. 1, pp.
–61, 2012, doi: 10.1007/s11669-012-9982-6.
D. G. Eskin, Q. Du, D. Ruvalcaba, and L. Katgerman,
―Experimental study of structure formation in binary Al-Cu
alloys at different cooling rates,‖ Materials Science and
Engineering A, vol. 405, no. 1–2, pp. 1–10, 2005, doi:
1016/j.msea.2005.05.105.
W. Desrosin, L. Boycho, V. Scheiber, C. M. Méndez, C. E.
Schvezov, and A. E. Ares, ―Evolution of Metallographic
Parameters during Horizontal Unidirectional Solidification of
Zn-Sn Alloys,‖ Procedia Materials Science, vol. 8, pp. 968–
, 2015, doi: 10.1016/j.mspro.2015.04.158.
H. Kaya, U. Böyük, E. Çadirli, and N. Maraşli, ―Influence of
growth rate on microstructure, microhardness, and electrical
resistivity of directionally solidified Al-7 wt% Ni hypoeutectic alloy,‖ Metals and Materials International, vol. 19,
no. 1, pp. 39–44, 2013, doi: 10.1007/s12540-013-1007-4.
E. Çadirli, ―Effect of solidification parameters on mechanical
properties of directionally solidified Al-Rich Al-Cu alloys,‖
Metals and Materials International, vol. 19, no. 3, pp. 411–
, 2013, doi: 10.1007/s12540-013-3006-x.
S. Farahany, Mohd. H. Idris, A. Ourdjini, F. Faris, and H.
Ghandvar, ―Evaluation of the effect of grain refiners on the
solidification characteristics of an Sr-modified ADC12 diecasting alloy by cooling curve thermal analysis,‖ J Therm
Anal Calorim, vol. 119, no. 3, pp. 1593–1601, Mar. 2015,
doi: 10.1007/s10973-014-4367-1.
M. Johnsson, L. Backerud, and G. K. Sigworth, ―Study of the
mechanism of grain refinement of aluminum after additions
of Ti- and B-containing master alloys,‖ Metallurgical
Transactions A, vol. 24, no. 2, pp. 481–491, 1993, doi:
1007/BF02657335.
M. Vončina, J. Medved, L. Jerina, I. Paulin, P. Cvahte, and
M. Steinacher, ―The Impact of AL-TI-B Grain-Refiners from
Different Manufacturers on Wrought AL-alloy,‖ Archives of
Metallurgy and Materials, pp. 739–746, Mar. 2019, doi:
24425/amm.2019.127607.
M. Buchmann and M. Rettenmayr, ―Microstructure
evolution during melting and resolidification in a
temperature gradient,‖ Journal of Crystal Growth, vol. 284,
no. 3–4, pp. 544–553, 2005, doi:
1016/j.jcrysgro.2005.06.044.
A. Kolahdooz, S. Nourouzi, M. Bakhshi, and S. J.
Hosseinipour, ―Investigation of the controlled atmosphere of
semisolid metal processing of A356 aluminium alloy,‖
Journal of Mechanical Science and Technology, vol. 28, no.
, pp. 4267–4274, 2014, doi: 10.1007/s12206-014-0940-6.
O. L. Rocha, C. A. Siqueira, and A. Garcia, ―Heat flow
parameters affecting dendrite spacings during unsteady-state
solidification of Sn-Pb and Al-Cu alloys,‖ Metallurgical and
Materials Transactions A, vol. 34, no. 4, pp. 995–1006,
, doi: 10.1007/s11661-003-0229-3.
M. Gündüz, H. Kaya, E. Çadırlı, N. Maraşlı, K. Keşlioğlu,
and B. Saatçi, ―Effect of solidification processing parameters
on the cellular spacings in the Al–0.1wt% Ti and Al–0.5wt%
Ti alloys,‖ Journal of Alloys and Compounds, vol. 439, no.
–2, pp. 114–127, Jul. 2007, doi:
1016/j.jallcom.2006.08.246.
A. J. Vasconcelos, R. H. Kikuchi, A. S. Barros, and T. A.
Costa, ―Interconnection between microstructure and
microhardness of directionally solidified binary Al-6wt .%
Cu and multicomponent Al-6wt .% Cu-8wt .% Si alloys,‖
Annals of the Brazilian Academy of Sciences, vol. 88, no. 2,
pp. 1099–1111, 2016, doi: 10.1590/0001-
DOI: http://dx.doi.org/10.30811/jpl.v22i4.4916
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .
Alamat Surat :
Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia