Utilization of Sengon Wood Sawdust as Bio-Pellet Feedstock: Characteristics, Potential, and Feasibility for Renewable Energy

Eko Yohanes Setyawan, Semuel Poumer Paepenan

Abstract


The pellet-making process involves stages of drying, compaction, cooling, and size separation. Considering that Indonesia has great potential for biomass supply, this research aims to identify the characteristics of bio-pellets produced from sengon wood sawdust based on the pellet standard SNI8675:2018. The results showed that the highest calorific value at the Dry Basis (DB) condition was 4703 Kcal/kg, meeting national and international standards. The moisture content in the As Received (AR) condition was recorded at 10.36%, while the lowest ash content was 1.72%. The highest combustion rate was found in sample 3, with a value of 0.174 gr/min, indicating good combustion performance. The utilization of sengon wood sawdust as bio-pellets can be an efficient and environmentally friendly renewable energy solution, and has the potential to be further developed to support diversification and national energy security.


Keywords


Wood pellets, sengon wood, biomass, renewable energy.

Full Text:

PDF

References


Pełka, G.; Jach-Noco´ n, M.; Paprocki, M.; Jachimowski, A.;

Lubo´ n,W.; Noco´ n, A.;Wygoda, M.; Wyczesany, P.;

Pachytel, P.; Mirowski, T. Comparison of Emissions and

Efficiency of Two Types of Burners When BurningWood

Pellets from Different Suppliers. Energies 2023, 16, 1695.

https://doi.org/10.3390/en16041695

Prayudi Suparmin, Roswati Nurhasanah, Hendri Hendri &

Muhammad Ridwan (2023) Biomass for dual-fuel syngas

diesel power plants. Part I: The effect of preheating on

characteristics of the syngas gasification of municipal solid

waste and wood pellets, Arab Journal of Basic and Applied

Sciences, 30:1, 378-392, DOI:

1080/25765299.2023.2223027

B. S. Nasional, ―Pelet Biomassa Untuk Energi SNI

:2018,‖ 2018.

Dafnomilis, I., Hoefnagels, R., Pratama, Y. W., Schott, D. L.,

Lodewijks, G., & Junginger, M. (2017). Review of solid and

liquid biofuel demand and supply in Northwest Europe

towards 2030–A comparison of national and regional

projections. Renewable and Sustainable Energy Reviews,

,31–45. https://doi.org/10.1016/j.rser.2017.04.108

E. A. Nugraha, ―Karakteristik Pelet Campuran Tandan

Kosong Kelapa Sawit (Elaeis guineensis jacq.) dan Arang,‖

H. R. Prihandana R, ―Energi Hijau,‖ 2007.

M. Zamorano, V. Popov, M. L. Rodríguez, and A. GarcíaMaraver, ―A comparative study of quality properties of

pelletized agricultural and forestry lopping residues,‖ Renew.

Energy, vol. 36, no. 11, pp. 3133–3140, 2011.

R. Godina, L. J. R. Nunes, F. M. B. C. Santos, and J. C. O.

Matias, ―Logistics cost analysis between wood pellets and

torrefied Biomass Pellets: The ase of Portugal,‖ 2018 7th Int.

Conf. Ind. Technol. Manag. ICITM 2018, vol. 2018-Janua,

no. March, pp. 284–287, 2018.

E. Thiffault, J. Barrette, P. Blanchet, Q. N. Nguyen, and K.

Adjalle, ―Optimizing quality of wood pellets made of

hardwood processing residues,‖ Forests, vol. 10, no. 7, pp.

–19, 2019.

W. Wattana, S. Phetklung, W. Jakaew, S. Chumuthai, P.

Sriam, and N. Chanurai, ―Characterization of Mixed

Biomass Pellet Made from Oil Palm and Para-rubber Tree

Residues,‖ Energy Procedia, vol. 138, pp. 1128–1133, 2017.

R. Godina, L. J. R. Nunes, F. M. B. C. Santos, and J. C. O.

Matias, ―Logistics cost analysis between wood pellets and

torrefied Biomass Pellets: The ase of Portugal,‖ 2018 7th Int.

Conf. Ind. Technol. Manag. ICITM 2018, vol. 2018-Janua,

no. March, pp. 284–287, 2018.

N. K. Dien, T. T. Tho, N. V. Thanh, N. V. A. Duy, A.

Jannifar, and N. H. Tho, ―Application of topology

optimization technique in sand casting process of a complex

product based on FDM 3D printing technology,‖ vol. 19,

A. Akhyar, ―Numerical-hydrodynamic analysis, vickers

hardness, and tensile test of cast-brass alloy for boat

propellers,‖ Jurnal Polimesin, vol. 21, no. 2, Apr. 2023, doi:

30811/jpl.v21i2.3743.

J. G. Kaufman and E. L. Roy, Aluminum Alloy Castings:

Properties , Processes , and Applications. 2004.

S. Khan, A. Ourdjini, Q. S. Named, M. A. Alam Najafabadi,

and R. Elliott, ―Hardness and mechanical property

relationships in directionally solidified aluminium-silicon

eutectic alloys with different silicon morphologies,‖ Journal

of Materials Science, vol. 28, no. 21, pp. 5957–5962, 1993,

doi: 10.1007/BF00365208.

D. Masnur, Suyitno, and V. Malau, ―The Influence of Mold

Material on Cooling Curve, Solidification Parameters, and

Micro-hardness of Al–6wt .% Si in Unidirectional

No Testing Description

You can see that the dark-colored part is larger. The

lighter colored, or white parts are probably metallic

elements.

It can be seen that the bright part is wider and there are

more debris.

While dark parts appear in some places, there are also

bright parts.

No Testing Description

You can see that the dark-colored part is larger. The

lighter colored, or white parts are probably metallic

elements.

It can be seen that the bright part is wider and there are

more debris.

While dark parts appear in some places, there are also

bright parts.

No Testing Description

You can see that the dark-colored part is larger. The

lighter colored, or white parts are probably metallic

elements.

It can be seen that the bright part is wider and there are

more debris.

While dark parts appear in some places, there are also

bright parts.

Disseminating Information on the Research of Mechanical Engineering - Jurnal Polimesin Volume 22, No. 4, August 2024 395

Solidification,‖ IOP Conf. Series: Materials Science and

Engineering, vol. 547, 2019, doi: 10.1088/1757-

X/547/1/012014.

M. Farkašová, E. Tillová, and M. Chalupová, ―Modification

of Al-Si-Cu cast alloy,‖ FME Transactions, vol. 41, no. 3,

pp. 210–215, 2013.

G. Timelli, G. Camicia, and S. Ferraro, ―Effect of grain

refinement and cooling rate on the microstructure and

mechanical properties of secondary Al-Si-Cu alloys,‖

Journal of Materials Engineering and Performance, vol. 23,

no. 2, pp. 611–621, 2014, doi: 10.1007/s11665-013-0757-y.

L. Bolzoni, M. Xia, and N. H. Babu, ―Formation of equiaxed

crystal structures in directionally solidified Al-Si alloys using

Nb-based heterogeneous nuclei,‖ Nature Publishing Group,

no. December, pp. 1–10, 2016, doi: 10.1038/srep39554.

M. Nowak, L. Bolzoni, and N. Hari Babu, ―Grain refinement

of Al-Si alloys by Nb-B inoculation. Part I: Concept

development and effect on binary alloys,‖ Materials and

Design, vol. 66, no. PA, pp. 366–375, 2015, doi:

1016/j.matdes.2014.08.066.

M. Okayasu, S. Takeuchi, S. Wu, and T. Ochi, ―Effects of

Sb, Sr, and Bi on the material properties of cast Al-Si-Cu

alloys produced through heated mold continuous casting,‖

Journal of Mechanical Science and Technology, vol. 30, no.

, pp. 1139–1147, 2016, doi: 10.1007/s12206-016-0218-2.

Q. Wang, Y. X. Li, and X. C. Li, ―Grain Refinement of Al –

Si Alloys and the Efficiency Assessment by Recognition of

Cooling Curves,‖ Metallurgical and Materials Tranactions

A, vol. 34, no. May, pp. 1175–1182, 2003.

G. K. Sigworth and T. A. Kuhn, ―Grain refinement of

aluminum casting alloys,‖ International Journal of

Metalcasting, vol. 1, no. 1, pp. 31–40, 2007, doi:

1361/asmhba0005302.

Z. Fan et al., ―Grain refining mechanism in the Al / Al – Ti –

B system,‖ ACTA MATERIALIA, vol. 84, pp. 292–304, 2015,

doi: 10.1016/j.actamat.2014.10.055.

K. Kashyap and T. Chandrashekar, ―Effects and mechanisms

of grain refinement in aluminium alloys,‖ Bulletin of

Materials Science, vol. 24, no. 4, pp. 345–353, 2001, doi:

1007/BF02708630.

M. Easton and D. StJohn, ―Grain Refinement of Aluminum

Alloys : Part I . The Nucleant and Solute Paradigms — A

Review of the Literature,‖ Metallurgical and Materials

Transactions A, vol. 30, no. June, pp. 1613–1623, 1999, doi:

1007/s11661-999-0098-5.

M. Easton and D. StJohn, ―Grain refinement of aluminum

alloys: Part II. Confirmation of, and a mechanism for, the

solute paradigm,‖ Metallurgical and Materials Transactions

A, vol. 30, no. June, pp. 1625–1633, 1999, doi:

1007/s11661-999-0099-4.

M. Riestra, E. Ghassemali, T. Bogdanoff, and S. Seifeddine,

―Interactive effects of grain refinement, eutectic modification

and solidification rate on tensile properties of Al-10Si alloy,‖

Materials Science and Engineering A, vol. 703, no. July, pp.

–279, 2017, doi: 10.1016/j.msea.2017.07.074.

D. Masnur, V. Malau, and S. Suyitno, ―Composition Profile

and Microstructure Formation of Unidirectionally Solidified

Al–4.5 wt% Cu,‖ Inter Metalcast, vol. 16, no. 1, pp. 349–

, Jan. 2022, doi: 10.1007/s40962-021-00598-4.

D. Masnur, V. Malau, and S. Suyitno, ―The dependency of

the microhardnes on microstructure and solidification

parameters of directionally solidified Al–4.5wt.%Cu in clay

mold,‖ JMES, vol. 14, no. 3, pp. 7125–7131, Sep. 2020, doi:

15282/jmes.14.3.2020.13.0558.

V. Raghavan, ―Al-Cu-Si (aluminum-copper-silicon),‖

Journal of Phase Equilibria and Diffusion, vol. 33, no. 1, pp.

–61, 2012, doi: 10.1007/s11669-012-9982-6.

D. G. Eskin, Q. Du, D. Ruvalcaba, and L. Katgerman,

―Experimental study of structure formation in binary Al-Cu

alloys at different cooling rates,‖ Materials Science and

Engineering A, vol. 405, no. 1–2, pp. 1–10, 2005, doi:

1016/j.msea.2005.05.105.

W. Desrosin, L. Boycho, V. Scheiber, C. M. Méndez, C. E.

Schvezov, and A. E. Ares, ―Evolution of Metallographic

Parameters during Horizontal Unidirectional Solidification of

Zn-Sn Alloys,‖ Procedia Materials Science, vol. 8, pp. 968–

, 2015, doi: 10.1016/j.mspro.2015.04.158.

H. Kaya, U. Böyük, E. Çadirli, and N. Maraşli, ―Influence of

growth rate on microstructure, microhardness, and electrical

resistivity of directionally solidified Al-7 wt% Ni hypoeutectic alloy,‖ Metals and Materials International, vol. 19,

no. 1, pp. 39–44, 2013, doi: 10.1007/s12540-013-1007-4.

E. Çadirli, ―Effect of solidification parameters on mechanical

properties of directionally solidified Al-Rich Al-Cu alloys,‖

Metals and Materials International, vol. 19, no. 3, pp. 411–

, 2013, doi: 10.1007/s12540-013-3006-x.

S. Farahany, Mohd. H. Idris, A. Ourdjini, F. Faris, and H.

Ghandvar, ―Evaluation of the effect of grain refiners on the

solidification characteristics of an Sr-modified ADC12 diecasting alloy by cooling curve thermal analysis,‖ J Therm

Anal Calorim, vol. 119, no. 3, pp. 1593–1601, Mar. 2015,

doi: 10.1007/s10973-014-4367-1.

M. Johnsson, L. Backerud, and G. K. Sigworth, ―Study of the

mechanism of grain refinement of aluminum after additions

of Ti- and B-containing master alloys,‖ Metallurgical

Transactions A, vol. 24, no. 2, pp. 481–491, 1993, doi:

1007/BF02657335.

M. Vončina, J. Medved, L. Jerina, I. Paulin, P. Cvahte, and

M. Steinacher, ―The Impact of AL-TI-B Grain-Refiners from

Different Manufacturers on Wrought AL-alloy,‖ Archives of

Metallurgy and Materials, pp. 739–746, Mar. 2019, doi:

24425/amm.2019.127607.

M. Buchmann and M. Rettenmayr, ―Microstructure

evolution during melting and resolidification in a

temperature gradient,‖ Journal of Crystal Growth, vol. 284,

no. 3–4, pp. 544–553, 2005, doi:

1016/j.jcrysgro.2005.06.044.

A. Kolahdooz, S. Nourouzi, M. Bakhshi, and S. J.

Hosseinipour, ―Investigation of the controlled atmosphere of

semisolid metal processing of A356 aluminium alloy,‖

Journal of Mechanical Science and Technology, vol. 28, no.

, pp. 4267–4274, 2014, doi: 10.1007/s12206-014-0940-6.

O. L. Rocha, C. A. Siqueira, and A. Garcia, ―Heat flow

parameters affecting dendrite spacings during unsteady-state

solidification of Sn-Pb and Al-Cu alloys,‖ Metallurgical and

Materials Transactions A, vol. 34, no. 4, pp. 995–1006,

, doi: 10.1007/s11661-003-0229-3.

M. Gündüz, H. Kaya, E. Çadırlı, N. Maraşlı, K. Keşlioğlu,

and B. Saatçi, ―Effect of solidification processing parameters

on the cellular spacings in the Al–0.1wt% Ti and Al–0.5wt%

Ti alloys,‖ Journal of Alloys and Compounds, vol. 439, no.

–2, pp. 114–127, Jul. 2007, doi:

1016/j.jallcom.2006.08.246.

A. J. Vasconcelos, R. H. Kikuchi, A. S. Barros, and T. A.

Costa, ―Interconnection between microstructure and

microhardness of directionally solidified binary Al-6wt .%

Cu and multicomponent Al-6wt .% Cu-8wt .% Si alloys,‖

Annals of the Brazilian Academy of Sciences, vol. 88, no. 2,

pp. 1099–1111, 2016, doi: 10.1590/0001-




DOI: http://dx.doi.org/10.30811/jpl.v22i4.4916

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .

 

Alamat Surat :

Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia