Study on the application of green energy in a mini-AC cooling system utilizing peltiermodule and heat pipe technology

Irwin Bizzy, Darmawi Darmawi, Agung Mataram, Fadhil Fuad Rachman

Abstract


The climate in tropical countries is very humid and hot, so it requires cooling and regulating air humidity. Heat release from the heat side using a heat sink, such as the conventional Peltier method, does not function optimally due to the limited area of thermal resistance obtained. To increase the thermal resistance in heat release, a heat pipe is used as a passive heat exchange device so that it can maximize heat transfer from the hot side of the Peltier to the surrounding air. This research aims to determine the rate of heat transfer, whether it can be conditioned by the relative humidity (RH) in the room, and whether installing a temperature and RH control system can work to cool the room. Experimental methods were used in this research. This research results show that TEC Cooler can transfer heat to a maximum. TEC can transfer heat at 22.7 J/s per second with 3 running fans. With a power consumption of 136.1 W. The total energy released is 114.7 J/s; this energy is still considered suitable for use in cooling a room.


Keywords


TEC; Heat Pipe; Air Conditioning; Heat Balance

Full Text:

PDF

References


ASHRAE, 2021 ASHRAE® Handbook. Fundamentals. 2021.

SNI, “Konservasi Energi Sistem Tata Udara Bangunan Gedung,” 2010.

L. Tacconi and M. Z. Muttaqin, “Reducing emissions from land use change in Indonesia: An overview,” Forest Policy and Economics, vol. 108. 2019.

P. Tobin, N. M. Schmidt, J. Tosun, and C. Burns, “Mapping states’ Paris climate pledges: Analysing targets and groups at COP 21,” Glob. Environ. Chang., vol. 48, 2018.

L. Drojetzki and M. Porowski, “The problem of selecting an energy-optimal cooling system using natural refrigerants in a supermarket application in a humid continental and Mediterranean climate conditions,” Int. J. Refrig., vol. 136, 2022.

H. Nguyen, J. Stiegeler, H. Liepold, C. Schwarz, S. Vierrath, and M. Breitwieser, “A Comparative Study of Conditioning Methods for Hydrocarbon-Based Proton-Exchange Membrane Fuel Cells for Improved Performance,” Energy Technol., vol. 11, no. 8, 2023.

M. Walid Faruque, M. Hafiz Nabil, M. Raihan Uddin, M. Monjurul Ehsan, and S. Salehin, “Thermodynamic assessment of a triple cascade refrigeration system utilizing hydrocarbon refrigerants for ultra-low temperature applications,” Energy Convers. Manag. X, vol. 14, 2022.

K. Harby, “Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview,” Renewable and Sustainable Energy Reviews, vol. 73. 2017.

S. Sabudin, M. S. M. Noor, M. K. Abdullah, M. F. M. Batcha, and J. Taweekun, “Performance Evaluation of a Split Unit Air-Conditioner Retrofitted with Hydrocarbon Refrigerant (HC22),” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 82, no. 1, 2021.

H. A. Ahmed, T. F. Megahed, S. Mori, S. Nada, and H. Hassan, “Performance investigation of new design thermoelectric air conditioning system for electric vehicles,” Int. J. Therm. Sci., vol. 191, no. April, p. 108356, 2023.

J. Park and S. Jeong, “Transient cooling operation of multistage thermoelectric cooler (TEC),” Prog. Supercond. Cryog., vol. 23, no. 3, 2021.

K. Teffah, Y. Zhang, and X. L. Mou, “Modeling and experimentation of new thermoelectric cooler-thermoelectric generator module,” Energies, vol. 11, no. 3, 2018.

D. Liu, Y. Cai, and F. Y. Zhao, “Optimal design of thermoelectric cooling system integrated heat pipes for electric devices,” Energy, vol. 128, pp. 403–413, 2017.

H. Kepekci, “Modeling and performance of a thermoelectric refrigerator,” Int. Anatol. Energy Symp., vol. 5, no. 24-25 March, pp. 316–326, 2021.

I. Bizzy et al., “Penerapan Teknologi TEC-BOX untuk Mendinginkan Minuman Kemasan di Desa Ulak Kembahang 2,” in Avoer 14, 2022, pp. 1–6.

W. A. Salah and M. Abuhelwa, “Review of thermoelectric cooling devices recent applications,” J. Eng. Sci. Technol., vol. 15, no. 1, pp. 455–476, 2020.

I. Bizzy, A. Firdaus, D. Apriyan, and F. Rachman, “Pengaruh Temperatur Kotak Pendingin terhadap Waktu dan Arus Listrik Modul TEC dengan Arduino Mega 2560,” vol. 17, no. 1, pp. 31–36, 2022.

S. Manikandan et al., “A novel technique to enhance thermal performance of a thermoelectric cooler using phase-change materials,” J. Therm. Anal. Calorim., vol. 140, no. 3, pp. 1003–1014, 2020.

D. Pal, A. Ansari, and K. K. Behera, “A Report on Design & Setup of Peltier Module Based Air Cooler,” Int. J. Recent Technol. Eng., vol. 9, no. 1, pp. 2458–2463, 2020.

K. Atik and Y. Yildiz, “An experimental investigation of a domestic type solar TE cooler,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 34, no. 7, 2012.

M. Ahsani and A. Prijo Budijono, “Rancangan Bangun Pendingin Ruangan Portable dengan Memanfaatkan Efek Perbedaan Suhu pada Thermo Electric Cooler (TEC),” JRM. Vol. 03 Nomor 01 Tahun 2015, 100-109, vol. 03, 2015.

S. Suryaningsih and O. Nurhilal, “Optimal design of an atmospheric water generator (AWG) based on thermo-electric cooler (TEC) for drought in rural area,” in AIP Conference Proceedings, 2016, vol. 1712.




DOI: http://dx.doi.org/10.30811/jpl.v22i2.4893

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia