Analysis of nitrogen adsorption capability at various activation temperatures of Klaten natural zeolite

Novi Caroko, Sukamta Sukamta

Abstract


The Pressure Swing Adsorption (PSA) method operates by passing air through an adsorbent to produce concentrated oxygen gas. Zeolites are commonly utilized as adsorbents due to their ability to adsorb nitrogen from the surrounding air. Two types of zeolites commonly employed are natural and synthetic zeolites. While the utilization of natural zeolites as adsorbents in oxygen purification remains limited, their potential as an alternative adsorbent is worth exploring in this field. This study focused on developing physically activated Klaten natural zeolite as an adsorbent to enhance oxygen purity. Physical activation involved heating for 1.5 hours using an electric oven at four temperature variations (250ºC, 300ºC, 350ºC, and 400ºC). Additionally, four distinct flow rates were tested: 0.1; 0.5; 1.0; and 1.5 lpm. Oxygen purification testing revealed that higher activation temperatures led to greater increases in oxygen concentration. The highest increase of 2.45% was achieved at an activation temperature of 400ºC, while the lowest increase of 1.75% was observed at 250ºC with a flow rate of 0.1 lpm. With a 10-minute holding period, oxygen content during the adsorption process ranged from 1.35% to 2.45%, compared to 0.60%-0.75% without holding. Physical activation of zeolite from Klaten enhanced its nitrogen absorption capacity, indicating the potential of natural zeolite from Klaten for oxygen purification through optimized activation processes, possibly via chemical activation

Keywords


Flow rate,Klatennatural zeolite, oxygen concentration, physics activation, PSA.

Full Text:

PDF

References


M. W. Ackley, Medical oxygen concentrators: a review of progress in air separation technology, vol. 25, no. 8. Springer US, 2019. doi: 10.1007/s10450-019-00155-w.

C. A. Grande, ‘Advances in Pressure Swing Adsorption for Gas Separation’, ISRN Chem. Eng., vol. 2012, pp. 1–13, 2012, doi: 10.5402/2012/982934.

A. M. Helmenstine, ‘The Chemical Composition of Air’, ThoughtCo., 2022. https://www.thoughtco.com/chemical-composition-of-air-604288

J. Ganley, ‘Pressure Swing Adsorption in the Unit Operations Laboratory’, Chem. Eng. Educ., vol. 52, no. 1, pp. 44–51, 2020, doi: 10.18260/2-1-370.660-29484.

J. Y. Rumbo Morales et al., ‘Review of the Pressure Swing Adsorption Process for the Production of Biofuels and Medical Oxygen: Separation and Purification Technology’, Adsorpt. Sci. Technol., 2022, doi: 10.1155/2022/3030519.

D. Satria, T. Kurniawan, and N. J. Salman, ‘The Effect of Variation of Zeolite As Adsorbent Medium and Adsorption Pressure Toward the Quality of Oxygen Produced From Pressure Swing Adsorption (PSA)’, J. Rekayasa Mesin, vol. 13, no. 1, pp. 119–127, 2022, doi: 10.21776/ub.jrm.2022.013.01.13.

A. Y. Bahari, S. Agustina, and T. Kurniawan, ‘Design and Construction of Portable Oxygen Concentrator Using Pressure Swing Adsorption ( PSA ) Technology’, 2023.

D. Hardita and W. Wirawan, ‘The effect of activated carbon granules and potassium hydroxide (KOH) solution on welding particulates and gases in air filtration’, J. Polimesin, vol. 21, no. 6, pp. 618–624, 2023.

C. Algieri and E. Drioli, ‘Zeolite membranes: Synthesis and applications’, Sep. Purif. Technol., vol. 278, p. 119295, 2022, doi: 10.1016/j.seppur.2021.119295.

Z. A. Abdel-Rahman, ‘A Comparison Between The Product-Refill and The Equalization Oxygen Pressure Swing Adsorption Processes’, Iraqi J. Chem. Pet. Eng., vol. 19, no. 1, pp. 61–66, 2018.

P. Misaelides, ‘Application of Natural Zeolites in Environmental Remediation: A Short Review’, Microporous Mesoporous Mater., vol. 144, pp. 15–18, 2011, doi: 10.1016/j.micromeso.2011.03.024.

M. Moshoeshoe, M. S. Nadiye-Tabbiruka, and V. Obuseng, ‘A Review of the Chemistry, Structure, Properties and Applications of Zeolites’, Am. J. Mater. Sci., vol. 7, no. 5, pp. 196–221, 2017, doi: 10.5923/j.materials.20170705.12.

M. W. Ackley, S. U. Rege, and H. Saxena, ‘Application of Natural Zeolites in the Purification and Separation of Gases’, Microporous Mesoporous Mater., vol. 61, pp. 25–42, 2003, doi: 10.1016/S1387-1811(03)00353-6.

R. V. Siriwardane, Ming-Shing Shen, and E. P. Fisher, ‘Adsorption of CO2,N2, and O2 on Natural Zeolites’, Energy & Fuels, vol. 17, no. 3, pp. 571–576, 2003.

A. G. Dianty, A. R. S. Harahap, C. Harfian, and S. Bismo, ‘Wet Impregnation of Silver Oxide on Lampung Natural Zeolite as an Adsorbent to Produce Oxygen-Enriched Air Using PSA Technique’, MATEC Web Conf., vol. 154, pp. 1–5, 2018, doi: 10.1051/matecconf/201815401013.

H. Ding, Y. Wang, N. Liang, and B. Wang, ‘Activation of Natural Zeolite and Its Adsorption Property’, Adv. Mater. Res., vol. 178, pp. 3–7, 2011, doi: 10.4028/www.scientific.net/AMR.178.3.

M. Djaeni, L. Kurniasari, A. Purbasari, and S. B. Sasongko, ‘Activation of Natural Zeolite as Water Adsorbent for Mixed-Adsorption Drying’, 2010.

A. A. Lepa, I. Salim, and F. P. Kafiar, ‘Utilization of Modified Natural Zeolite using SomeTreatments For Reduction of Na+, K+, Cl-And NaCl Contents in Brackish Water’, Int. J. ChemTech Res., vol. 11, no. 11, pp. 202–210, 2018, doi: 10.20902/ijctr.2018.111120.

Suhartana, E. Sukmasari, and C. Azmiyawati, ‘Modification of Natural Zeolite with Fe(III) and Its Application as Adsorbent Chloride and Carbonate ions’, IOP Conf. Ser. Mater. Sci. Eng., vol. 349, no. 1, pp. 1–12, 2018, doi: 10.1088/1757-899X/349/1/012075.

S. R. Istiqomah, S. Hastuti, and V. Suryanti, ‘Utilization of winged bean ( Psophocarpus tetragonolobus) seed powder as a coagulant and activated natural zeolite as an adsorbent for improving of tapioca and tofu wastewater qualities’, J. Phys. Conf. Ser., vol. 2556, no. 1, pp. 1–8, 2023, doi: 10.1088/1742-6596/2556/1/012001.

Figaro, ‘Technical Information For KE-Series’, vol. 1, no. 5, pp. 1–10, 2005, [Online]. Available: https://www.figaro.co.jp/en/product/docs/ke_product infomation%28en%29_rev06.pdf

H. R. Fajrin, T. N. Rosyadiy, and D. Sukwono, ‘Perancangan Oxygen Analyzer Dilengkapi Penyimpanan Data Eksternal Berbasis Arduino Uno’, ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 7, no. 3, p. 559, 2019, doi: 10.26760/elkomika.v7i3.559.

Y. N. Firdaus, S. Syaifudin, and M. P. A. Tetra Putra, ‘Alat Ukur Konsentrasi dan Flow Oksigen Pada Ventilator’, J. Teknokes, vol. 12, no. 1, pp. 27–32, 2019, doi: 10.35882/teknokes.v12i1.5.

M. K. Król and P. Jeleń, ‘The Effect of Heat Treatment on the structure of Zeolite A’, Materials (Basel)., vol. 14, no. 16, pp. 1–9, 2021, doi: 10.3390/ma14164642.

Suhas, V. K. Gupta, P. J. M. Carrott, R. Singh, M. Chaudhary, and S. Kushwaha, ‘Cellulose: A Review As Natural, Modified and Activated Carbon Adsorbent’, Bioresour. Technol., vol. 216, pp. 1066–1076, 2016, doi: 10.1016/j.biortech.2016.05.106.

A. F. Al-Shawabkeh, N. Al-Najdawi, and A. N. Olimat, ‘High Purity Oxygen Production by Pressure Vacuum Swing Adsorption Using Natural Zeolite’, Results Eng., vol. 18, pp. 1–13, 2023, doi: 10.1016/j.rineng.2023.101119.

Irvan, B. Trisakti, S. Maulina, R. Sidabutar, Iriany, and M. S. Takriff, ‘Adsorption-Desorption System for CO2 Removal in Biogas Using Natural Zeolite-Based Adsorbent’, J. Eng. Sci. Technol., vol. 13, no. 10, pp. 3058–3070, 2018.

B. Kottititum, T. Srinophakun, N. Phongsai, and Q. T. Phung, ‘Optimization of A Six-Step Pressure Swing Adsorption Process for Biogas Separation on A Commercial Scale’, Appl. Sci., vol. 10, pp. 1–19, 2020, doi: 10.3390/app10144692.




DOI: http://dx.doi.org/10.30811/jpl.v22i3.4882

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia