The Effect of Electric Current On Hydrogen Gas Production Using Water Electrolysis Process

Asepta Surya Wardhana, Umi Yuliatin, Amida Yasmin

Abstract


New renewable energy sources are being developed to replace conventional energy sources such as biofuels, electric cars, and solar cars in the transportation sector. However, this generation has limitations in that it requires external energy sources to be converted into electricity.This study examined the development of alternative energy sources through water electrolysis to produce hydrogen. The factors affecting the electrolysis process, such as the catalysts and external voltage, were investigated. The study successfully implemented hydrogen production using a wet cell electrolysis reactor design involving components such as an Arduino, MQ-8 gas sensor, and DS18B20 temperature sensor. This study used a reactor with electrodes of six plates, where the electrode plates werethe anode and cathode of three plates each. Hydrogen levels were measured using an MQ-8 semiconductor sensor. The test results showed that varying the current in the electrolysis reactor increased the hydrogen concentration to a maximum of 3405.77 PPM. A decrease in hydrogen levels occurred after 20-40 minutes due to the saturated electrolytes. Factors such as the ion concentration, hydration, ion attraction, and temperature also influence the conductivity of the solution duringelectrolysis. The results of this study obtained a minimum average hydrogen content of 646.054 PPM and a maximum of 2932.306 PPM. The reactor temperature conditions were stable at an average temperature of 27°C.


Keywords


Hydrogen concentration, Hydrogen gas, MQ-8 gas sensor, Water electrolysis process

Full Text:

PDF

References


F. Adjikri, “Strategi pengembangan energi terbarukan di Indonesia,” Jurnal Online Mahasiswa (Jom) Bidang Teknik Elektro, vol. 1, no. 1, 2017.

M. Azhar and D. A. Satriawan, “Implementasi Kebijakan Energi Baru dan Energi Terbarukan Dalam Rangka Ketahanan Energi Nasional,” Administrative Law and Governance Journal, vol. 1, no. 4, pp. 398–412, 2018, doi: 10.14710/alj.v1i4.398-412.

A. L. Hananto et al., “Recent trends in sustainable modelling for hydrogen production and utilization,” vol. 21, no. 3, pp. 278–284, 2023.

R. Eliza et al., “Produksi Gas Hidrogen Berdasarkan Pengaruh Luas Penampang Terhadap Konsentrasi Larutan Elektrolit dan Suplai Arus dengan Metode Elektrolisis,” vol. 1, no. 11, pp. 447–451, 2021.

Rahmanto, R. Hengki, and J. P. Diningrum, “Analisis Penggunaan Variasi Katalis NaOH, NaCl, dan KOH Terhadap Laju Aliran Gas HHO,” Jurnal Ilmiah Teknik Mesin, vol. 7, no. 2, pp. 64–71, 2020, doi: 10.33558/jitm.v7i2.1916.

D. Fahreza, D. Kurniawati, N. Subeki, and K. Person, “Analisis Produksi Gas Hidrogen Dan Gas Oksigen Dalam Proses Elektrolisis,” Prosiding SENTRA (Seminar Teknologi dan Rekayasa), vol. 0, no. 4, pp. 50–54, 2019.

B. K. Mohammed, M. B. Mortatha, A. S. Abdalrada, and H. T. H. Salim ALRikabi, “A comprehensive system for detection of flammable and toxic gases using IoT,” Periodicals of Engineering and Natural Sciences, vol. 9, no. 2, pp. 702–711, 2021, doi: 10.21533/pen.v9i2.1894.

N. Alam and K. M. Pandey, “Experimental Study of Hydroxy Gas (HHO) Production with Variation in Current, Voltage and Electrolyte Concentration,” IOP Conference Series: Materials Science and Engineering, vol. 225, no. 1, 2017, doi: 10.1088/1757-899X/225/1/012197.

M. Mina and K. Kartika, “Monitoring System for Levels of Voltage, Current, Temperature, Methane, and Hydrogen in IoT-Based Distribution Transformers,” International Journal of Engineering, Science and Information Technology, vol. 3, no. 1, pp. 22–27, 2023, doi: 10.52088/ijesty.v3i1.414.

A. K. Dewi, A. S. Wardhana, A. Pratama, and W. A. Nugraha, “Alat Deteksi Kebocoran Gas Rumah Tangga Berbasis Internet of Things,” vol. 2, no. 2, pp. 56–65, 2021.

N. Saksono, J. Abidin, and S. Bismo, “Hydrogen Production Systems Design Through Plasma Non-Thermal Electrolysis Process,” in In The 1st International Seminar on Fundamental & Application of Chemical Engineering, 2010, no. November, pp. 1–8.

Murti, W. A. Surahman, M. R. Kirom, and A. Suhendi, “Perancangan Instrument Pengukuran Konsentrasi Gas Hidrogen Pada Reaktor Biogas Bagian Anaerobic Digester,” in eProceedings of Engineering, 2019, vol. 6, no. 1, pp. 1219–1227.

A. I. Sunny, A. Zhao, L. Li, and S. Kanteh Sakiliba, “Low-cost IoT-based sensor system: A case study on harsh environmental monitoring,” Sensors (Switzerland), vol. 21, no. 1, pp. 1–12, 2021, doi: 10.3390/s21010214.

D. Sahara and R. Zainul, “Pengaruh Konsentrasi Elektrolit Na2SO4 dalam Produksi Gas Hidrogen Menggunakan Sensor MQ-8,” Periodic, vol. 9, no. 1, pp. 24–28, 2020.

Y. Ghiffari and D. Kawano, “Studi Karakteristik Generator Gas HHO Tipe Dry Cell dan Wet Cell berdimensi 80 x 80 mm dengan Penambahan PWM E-3 FF (1kHz),” Teknik Pomits, vol. 2, no. 2, pp. 245–250, 2013.




DOI: http://dx.doi.org/10.30811/jpl.v22i1.4659

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia