Influence of Indium Tin Oxide (ITO) poling temperature in vacuum on surface roughness of Polyvinylidene Fluoride(PVDF) film

Suprapto Suprapto, Lisyanto Lisyanto, Eswanto Eswanto, Selamat Riadi, Safri Gunawan, Henry Iskandar, Jubaidah Jubaidah, Muhtadin Muhtadin

Abstract


The surface roughness is a significant parameter of the performance of PVDF thin film sensors. In this work, we have investigated the effect of ITO poling in vacuum at various temperature on the surface roughness of uniaxially stretched PVDF film. The influence of poling temperature on the surface roughness of PVDF film was examined using atomic force microscopy (AFM). In this work, the AFM data are obtained through the database, and topography is analyzed using Gwydion Software (GS). GS has characterized surface roughness in terms of Average Roughness (Ra), Root Mean Square (Rrms), and Arithmetic average height (Rz). The results show that the GS can detect and measure profile thickness and roughness on a nanoscale with reliable accuracy. The results confirm that the increased poling temperature can reduce the roughness of the surface.


Keywords


PVDF; ITO poling; Roughness; AFM; Gwydion software.

Full Text:

PDF

References


T. Mišić Radić, P. Vukosav, A. Čačković, and A. Dulebo, "Insights into the Morphology and Surface Properties of Microalgae at the Nanoscale by Atomic Force Microscopy (AFM): A Review," water, vol. 15, no. the issues, p. 1983, 2023. doi: https://doi.org/10.3390/w15111983

S. Aghayari, "PVDF composite nanofibers applications," Heliyon, no. the issues, 2022. doi:https://doi.org/10.1016/j.heliyon.2022.e11620.

T. Treebupachatsakul, S. Shinnakerdchoke, and S. J. S. Pechprasarn, "Analysis of effects of surface roughness on sensing performance of surface plasmon resonance detection for refractive index sensing application," vol. 21, no. the issues, p. 6164, 2021. doi: https://doi.org/10.3390/s21186164

D. Q. Tan, "Differentiation of roughness and surface defect impact on dielectric strength of polymeric thin films," IET Nanodielectrics, vol. 3, no. the issues, pp. 28-31, 2020. doi: https://doi.org/10.1049/iet-nde.2019.0031

Z. Jia, L. Jin, W. Liu, and Z. Ren, "Influence of sheet roughness on the sensitivity of piezoelectric force sensors," in Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, vol. 233, no. 1, pp. 243-250. doi: https://doi.org/10.1177/0954405417719738

S. Abubakar, J. L. Y. Chyi, S. T. Tan, S. Sagadevan, Z. A. Talib, and S. Paiman, "Nanoscale domain imaging and the electromechanical response of zinc oxide nanorod arrays synthesized on different substrates," Journal of Materials Research Technology, vol. 14, no. the issues, pp. 2451-2463, 2021. doi: https://doi.org/10.1016/j.jmrt.2021.07.125

A. Habib, S. Wagle, A. Decharat, F. J. S. M. Melandsø, and Structures, "Evaluation of adhesive-free focused high-frequency PVDF copolymer transducers fabricated on spherical cavities," vol. 29, no. the issues, p. 045026, 2020. doi: http://doi.org/10.1088/1361-665X/ab7a3d

M. A. Hari, L. Rajan, C. Subash, and S. Varghese, "Effect of nanoparticle size on the piezoelectric properties of PVDF based nanocomposite thin films," Materials Today: Proceedings, vol. 46, no. the issues, pp. 5781-5784, 2021. doi: https://doi.org/10.1016/j.matpr.2021.02.715

Y. Ting, H. Gunawan, C.-W. Chiu, and J.-Z. Zhong, "A new approach for surface poling of polyvinylidene fluoride (PVDF)," Ferroelectrics, vol. 446, no. the issues, pp. 18-27, 2013. doi: https://doi.org/10.1080/00150193.2013.820978

D. A. Porter, T. V. Hoang, and T. A. J. A. M. Berfield, "Effects of in-situ poling and process parameters on fused filament fabrication printed PVDF sheet mechanical and electrical properties," vol. 13, no. the issues, pp. 81-92, 2017.

Z. Wang, B. Sun, X. Lu, C. Wang, and Z. Su, "Molecular orientation in individual electrospun nanofibers studied by polarized AFM–IR," Macromolecules, vol. 52, no. the issues, pp. 9639-9645, 2019. doi: https://doi.org/10.1021/acs.macromol.9b01778

E. Joonaki, A. Hassanpouryouzband, C. L. Heldt, and O. Areo, "Surface chemistry can unlock drivers of surface stability of SARS-CoV-2 in a variety of environmental conditions," Chem, vol. 6, no. the issues, pp. 2135-2146, 2020. doi: https://doi.org/10.1016/j.chempr.2020.08.001

N. A. Lashkova, N. V. Permiakov, A. I. Maximov, Y. M. Spivak, and V. A. Moshnikov, "Local analysis of semiconductor nanoobjects by scanning tunneling atomic force microscopy," Physics Mathematics, vol. 1, no. the issues, pp. 15-23, 2015. doi: https://doi.org/10.1016/j.spjpm.2015.03.014

R. Kotsilkova et al., "Tensile and surface mechanical properties of polyethersulphone (pes) and polyvinylidene fluoride (PVDF) membranes," Journal of Theoretical Applied Mechanics, vol. 48, no. the issues, pp. 85-99, 2018. doi: http://dx.doi.org/10.2478/jtam-2018-0018

B. H. Alldritt, Prokop, Oinonen, Niko Urtev, Fedor Krejci, Ondrej Federici Canova, Filippo Kannala, Juho Schulz, Fabian, Liljeroth, Peter Foster, Adam S "Automated structure discovery in atomic force microscopy," Science advances, vol. 6, no. the issues, p. eaay6913, 2020. doi: https://doi.org/10.1126/sciadv.aay6913

M. Marrese, V. Cirillo, V. Guarino, and L. Ambrosio, "Short-term degradation of bi-component electrospun fibers: qualitative and quantitative evaluations via AFM analysis," Journal of Functional Biomaterials, vol. 9, no. the issues, p. 27, 2018. doi: https://doi.org/10.3390/jfb9020027

T. Pisarenko et al., "Comprehensive characterization of PVDF nanofibers at macro-and nanolevel," Polymers, vol. 14, no. the issues, p. 593, 2022. doi: https://doi.org/10.3390/polym14030593

S. Vlassov et al., "Adhesion and mechanical properties of PDMS-based materials probed with AFM: A review," Reviews on Advanced Materials Science, vol. 56, no. the issues, pp. 62-78, 2018. doi: https://doi.org/10.1515/rams-2018-0038

T. J. Myers, J. A. Throckmorton, R. A. Borrelli, M. O'Sullivan, T. Hatwar, and S. M. George, "Smoothing surface roughness using Al2O3 atomic layer deposition," Applied Surface Science, vol. 569, no. the issues, p. 150878, 2021. doi: https://doi.org/10.1016/j.apsusc.2021.150878

P. R. Potnis, N.-T. Tsou, and J. E. Huber, "A review of domain modelling and domain imaging techniques in ferroelectric crystals," Materials, vol. 4, no. the issues, pp. 417-447, 2011. doi: https://doi.org/10.3390/ma4020417

R. Roth, M. M. Koch, A. D. Rata, and K. Dörr, "Mechanical Nanoscale Polarization Control in Ferroelectric PVDF‐TrFE Films," Advanced Electronic Materials, vol. 8, no. the issues, p. 2101416, 2022. doi: https://doi.org/10.1002/aelm.202101416

D. Damjanovic, M. Budimir, M. Davis, and N. J. A. p. l. Setter, "Monodomain versus polydomain piezoelectric response of 0.67 Pb (Mg 1/3 Nb 2/3) O 3–0.33 PbTiO 3 single crystals along nonpolar directions," vol. 83, no. the issues, pp. 527-529, 2003. doi: https://doi.org/10.1063/1.1592880

K. Khulbe and T. Matsuura, "Characterization of synthetic membranes by Raman spectroscopy, electron spin resonance, and atomic force microscopy; a review," Polymer, vol. 41, no. the issues, pp. 1917-1935, 2000. doi: https://doi.org/10.1016/S0032-3861(99)00359-6

Y. Li, J. Yang, Z. Pan, and W. Tong, "Nanoscale pore structure and mechanical property analysis of coal: An insight combining AFM and SEM images," fuel, vol. 260, no. the issues, p. 116352, 2020. doi: https://doi.org/10.1016/j.fuel.2019.116352

A. K. Bajpai, R. Bhatt, and R. Katare, "Atomic force microscopy enabled roughness analysis of nanostructured poly (diaminonaphthalene) doped poly (vinyl alcohol) conducting polymer thin films," J Micron, vol. 90, no. the issues, pp. 12-17, 2016. doi: https://doi.org/10.1016/j.micron.2016.07.012

Z. Jin, D. Lei, Y. Wang, L. Wu, and N. Hu, "Influences of poling temperature and elongation ratio on PVDF-HFP piezoelectric films," Nanotechnology Reviews, vol. 10, no. the issues, pp. 1009-1017, 2021. doi: https://doi.org/10.1515/ntrev-2021-0070

J. Seo, J. Y. Son, and W.-H. J. M. L. Kim, "Structural and ferroelectric properties of P (VDF-TrFE) thin films depending on the annealing temperature," vol. 238, no. the issues, pp. 294-297, 2019. doi: https://doi.org/10.1016/j.matlet.2018.11.156

N. Jaglan and P. Uniyal, "On the structural, dielectric, piezoelectric, and energy storage behavior of polyvinylidene fluoride (PVDF) thick film: Role of annealing temperature," Journal of Applied Physics, vol. 132, no. the issues, 2022. doi: https://doi.org/10.1063/5.0123674

D. G. Jeong, H. H. Singh, M. S. Kim, and J. H. J. E. Jung, "Effect of Centrifugal Force on Power Output of a Spin-Coated Poly (Vinylidene Fluoride-Trifluoroethylene)-Based Piezoelectric Nanogenerator," J Energies, vol. 16, no. the issues, p. 1892, 2023. doi: https://doi.org/10.3390/en16041892

S. Wang and Q. Li, "Design, synthesis and processing of PVDF‐based dielectric polymers," Iet Nanodielectrics, vol. 1, no. the issues, pp. 80-91, 2018. doi: https://doi.org/10.1049/iet-nde.2018.0003.




DOI: http://dx.doi.org/10.30811/jpl.v21i6.4454

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia