Design and simulation of offshore crane structure with capacity of 400 ton

Freddy Marpaung, Harry Purnama, I Nyoman Artana, Nani Kurniawati, Dian Samodrawati, Tri Surawan, Harini Agusta

Abstract


Offshore cranes are transport machines which are  used to lift a heavy load to other places. The weight and strength of a crane are crucial parameters that must be considered during the design stage. There are many ways to optimize these aspects, such as suitable material selection and virtual simulation assistance using ANSYS software. The main goal of this study is to design and develop a structurally stable crane on the ship deck. This crane is modeled using CATIA software and analyzed using ANSYS software to obtain stress and displacement distribution on the crane structure. Maximum load is applied for four different elevation angles, namely (30°, 43°, 60°, and 80°). From the static structural simulation, the highest stress is obtained when the elevation angle of 30° is about 1030 MPa and deformation is 461.24 mm. The minimum fatigue life of the offshore crane at a luffing angle of 43° is 659.14 cycles.

Keywords


Offshore crane, structure analysis, stress, fatigue, CAE.

Full Text:

PDF

References


Ardiansyah, A. "Pelaksanaanbongkar material konstruksi PT. Semen Imasco Asiatic PugerpadaKapal MV. SUN unity olehBadan Usaha Pelabuhan PT. Delta ArthaBahari Nusantara CabangProbolinggo.”KaryaTulis (2021).

B. N. Khudhur, “Finite Element Analysis of the Boom of Crane Loaded Statically,” vol. 13, no. 9, 2013.

S. Wang, Z. Ren, G. Jin, and H. Chen, “Modeling and Analysis of Offshore Crane Retrofitted with Cable-Driven Inverted Tetrahedron Mechanism,” IEEE Access, vol. 9, pp. 86132–86143, 2021, doi: 10.1109/ACCESS.2021.3063792.

K. Abdullah, S. Sumardiono, and H. Soeroso, “Strength Analysis of the Deck Crane Barge Using the Finite Element Method,” 2023, doi: 10.4108/eai.11-10-2022.2326425.

D. A. Dewi and J. B. Ariatedja, “Fatigue Analysis of Pedestal-mounted Crane on Offshore Fixed Platform Using Finite Element Method,” Int. J. Mech. Eng. Sci., vol. 3, no. 2, p.38,2019,doi: 0.12962/j25807471.v3i2.9387.

H.-J. Seong, C.-K.Jeong, J.-H.Jeon, S.-H.Park, Y.-G.Jung, and S.-C. Huh, “A Safety Evaluation of Offshore Lattice Boom Crane,” Proc. 2018 Int. Conf. Comput. Model.Simul.Algorithm (CMSA 2018), vol. 151, no.Cmsa, pp. 275–280, 2018, doi: 10.2991/cmsa-18.2018.62.

D.S. Han, S.W. Yoo, H.S. Yoon, M.H. Kim, S.H. Kim, J.M. Lee, “Coupling analysis of finite element and finite volume method for the design and construction of FPSO crane”, Automat Constr, vol. 20(4), pp. 368–379, 2011.

O. Ozguc, “ASSESSMENT OF BUCKLING BEHAVIOUR,” vol. 27, no. 107, pp. 50–58, 2020.

R. Buczkowski, and B. Żyliński, “Finite element fatigue analysis of unsupported crane,” Polish Marit. Res., 28 (1) 127–135 (2021).doi:10.2478/pomr-2021-0012.

S. Echaroj, N. Pannucharoenwong, and P. Rattanadecho, “Development of vehicle chassis from novel materials for light weight electric shuttles using finite element analysis,” Sci. Technol. Asia, 26 (3) 64–76 (2021). doi:10.14456/scitechasia.2021.47.




DOI: http://dx.doi.org/10.30811/jpl.v22i2.4162

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia