Mechanical properties of FDM 3D printed component using self-made PLA-titanium filament: hardness perspective

Mahros Darsin, Faris Ahmad Junaedi, Agus Triono, Yuni Hermawan, Intan Hardiatama, R. Koekoeh Koenjtoro Wibowo, Hari Arbiantara Basuki

Abstract


3D printing, also known as additive layer manufacturing, is a technique that creates three-dimensional objects or any shape from a digital model. It works by building objects layer-by-layer, similar to how a laser printer operates. Fused Deposition Modeling (FDM) is a widely used technique in 3D printing because it is easy to use, cost-effective in production, and environmentally friendly. This study focuses on a self-made filament made of a PLA-titanium mixture. PLA is a biodegradable thermoplastic polymer sourced from plants, whereas titanium is a strong, lightweight, and corrosion-resistant metal. To measure the hardness of different materials, there are several methods available. In this study, the Shore D hardness test, specifically designed for polymer materials, was used. Data were collected using the Taguchi method, specifically L4 (23), and the data were analysedusingAnalysis of Variance (ANOVA). The variations in print parameters examined in this study include nozzle temperature (230°C and 240°C), layer height (0.2 mm and 0.3 mm), and print speed (30 mm/s and 40 mm/s). The aim of this study was to determine whether there were any changes in the hardness of the specimens. The ANOVA results revealed that the most influential parameter was print speed, with a contribution value of 56.01%. The results demonstrated that the printing parameters affected the hardness of the printed specimens. The highest hardness level of 56.3 Shore D was obtained with a nozzle temperature of 240°C, a layer height of 0.3 mm, and a print speed of 30 mm/s. The application of this study was demonstrated through the creation of dentures made from PLA-titanium.

Keywords


3D printing; Hardness test; Shore D; PLA; Titanium

Full Text:

PDF

References


Rasyid, S., RusdiNur, M. M., &Basongan, Y. (2022). Simulation and Experimental Evaluation of Tensile Properties and Macrostructure Changed of 3D printer PLA Filament.Polimesin, 20(2), 121–127.

Putra, K. S., & Sari, U. R. (2018). Pemanfaatan Teknologi 3D Printing Dalam Proses Desain Produk Gaya Hidup. Seminar Nasional Sistem Informasi Dan Teknologi Informasi 2018, 1–6

Aminur, M., Mat, S., Sam, M. S., Ramli, F. R., Alkahari, M. Ri., & Kudus, S. I. A. (2020). Design and development of 3D printer filament extruder. Proceedings of Mechanical Engineering Research, December, 293–294.

Triono, A., Darsin, M., Wcs, I. M. I., Asrofi, M., Prakoso, S. H., & Fajrul, R. (2023). Flexural Strength Optimization as Effect of Infill Pattern Variation in FDM 3D Printing of Multi-layers ABS-PLA Flexural Strength Optimization as Effect of Infill Pattern Variation in FDM 3D Printing of Multi-layers ABS-PLA (Issue April). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-134-0

Grygier, D., Kujawa, M., & Kowalewski, P. (2022). Deposition of Biocompatible Polymers by 3D Printing (FDM) on Titanium Alloy. Polymers, 14(2). https://doi.org/10.3390/polym14020235

Lin, X., Xiao, X., Wang, Y., Gu, C., Wang, C., Chen, J., Liu, H., Luo, J., Li, T., Wang, D., & Fan, S. (2018). Biocompatibility of Bespoke 3D-Printed Titanium Alloy Plates for Treating Acetabular Fractures. BioMed Research International, 2018. https://doi.org/10.1155/2018/2053486

Lim, L. T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science (Oxford), 33(8), 820–852. https://doi.org/10.1016/j.progpolymsci.2008.05.004

Sofyan, B. T. (2021). Pengantar Material Teknik (2nd ed.). UNHAN RI PRESS.

Kumayasari, M. F., & Sultoni, A. I. (2017). Studi Uji Kekerasan Rockwell Superficial vs Micro Vickers. Jurnal Teknologi Proses Dan Inovasi Industri, 2(2). https://doi.org/10.36048/jtpii.v2i2.789

Mohamed, M. I., & Aggag, G. A. (2003). Uncertainty evaluation of shore hardness testers. Measurement: Journal of the International Measurement Confederation, 33(3), 251–257. https://doi.org/10.1016/S0263-2241(02)00087-8

Sandi, A., Mahardika, M., Cahyono, S. I., Salim, U. A., Pratama, J., & Arifvianto, B. (2022). Pengaruh variasi parameter cetak dan post process terhadap tingkat kekerasan spesimen hasil cetak tiga dimensi berbasis stereolithography (SLA). Conference SENATIK STT Adisutjipto Yogyakarta, 7, 33–46. https://doi.org/10.28989/senatik.v7i0.454

.[12] Ristian Putri, Y. I., Firdausy, M. D., & Woroprobosari, N. R. (2018). Tingkat Kekerasan Permukaan Resin Komposit Akibat Masa Kedaluwarsa Material. ODONTO : Dental Journal, 5(1), 45. https://doi.org/10.30659/odj.5.1.45-48

.[13] Sumathy Raj, S., Anton Michailovich, K., Subramanian, K., Sathiamoorthyi, S., & Thanneerpanthalpalayam Kandasamy, K. (2018). Philosophy of Selecting ASTM Standards for Mechanical Characterization of Polymers and Polymer Composites. Mater. Plast, 58(3), 247–256.

Zamheri, Arifin, A. (2021). Pengaruh Parameter Pada Proses 3d Printing Menggunakan Fillament Eal-Fill Terhadap Akurasi Dimensi Dan Kekerasan Dengan Pendekatan Metode Taguchi. 7(2), 30–34

Soejanto. (2009). Desain eksperimen dengan metode Taguchi (1st ed.). Graha Ilmu.

Pratama, J., & Adib, A. Z. (2022). Pengaruh Parameter Cetak pada Nilai Kekerasan serta Akurasi Dimensi Material Thermoplastic Elastomer ( TPE ) Hasil 3D Printing. 25(1), 35–44

Sandi, A., Mahardika, M., Cahyono, S. I., Salim, U. A., Pratama, J., & Arifvianto, B. (2022). Pengaruh variasi parameter cetak dan post process terhadap tingkat kekerasan spesimen hasil cetak tiga dimensi berbasis stereolithography (SLA). Conference SENATIK STT Adisutjipto Yogyakarta, 7, 33–46. https://doi.org/10.28989/senatik.v7i0.454

Taqdissillah, D., Mutaqqin, A. Z., Darsin, M., Dwilaksana, D., &Ilminnafik, N. (2022). The Effect of Nozzle Temperature, Infill Geometry, Layer Height and Fan Speed on Roughness Surface in PETG Filament. Journal Mechanical Engineering Science and Technology (JMEST) Vol. 6, No. 2, November 2022, pp. 74-84.




DOI: http://dx.doi.org/10.30811/jpl.v22i2.4118

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia