Effect of Full Annealing and Single Quenching-Tempering Heat Treatment on the Mechanical Properties of JIS SUP 9A Steel

Andreas Luki Indratmoko, Irza Sukmana, Mohammad Badaruddin

Abstract


JIS SUP 9A leaf spring steel under hot-forging conditions was subjected to full annealing (FA) and single step-quenching-tempering heat treatments (SQT). Tensile test specimens to ASTM E 8 standards have been prepared. The FA process was performed by heating all specimens in the furnace at a constant temperature of 800°C for 2 hours, followed by cooling in the furnace. Then, all test specimens were heat-treated SQT. The SQT process was carried out by heating all samples in a furnace at 800°C for 1 hour and 650°C for 1 hour, each followed by immersion in crude palm oil (CPO) media at a liquid temperature of 70°C until the specimens reached 100°C. The FA process removes internal stresses with high microstructural softness and SQT produces a fine martensitic phase microstructure, which improves mechanical strength (tensile strength and impact strength) with good ductility. Electron and scanning microscopy have been used to determine the concentration of impurities and microstructural changes in relation to the mechanical properties of the specimen concerned. The results showed that the yield limit, maximum tensile stress, and impact energy increased by 113.5%, 16.3%, and 705.2%, respectively. However, hardness decreased by 18.8% for SQT specimens against FA after heat treatment. This research utilizes industrial waste, which is available quite a lot; in the future, it will become an alternative for handling environmental problems. The abundant availability of raw materials and resulting strength-toughness are the main advantages of this heat treatment

Keywords


Leaf spring steel, full annealing, single quenching tempering, crude palm oil, mechanical strength

Full Text:

PDF

References


M. Badaruddin and R. P. Pratama, “Effect of Single and Double Quenching-Tempering Heat Treatments on Microstructures and Tensile Strength of AISI 4140 in Annealing Condition”.

SSAB, “SSAB in brief,” Ssab, 2020, [Online]. Available: https://www.ssab.com/company/about-ssab/ssab-in-brief

H. K. D. H. Bhadeshia, Professor, S. R. Honeycombe, and Emeritus, Microstructure and Properties, 3rd ed., vol. 3, no. 1. London: Butterworth-Heinemann, 2006. [Online]. Available: https://lib-63vsc6hn5osfsnoz7ztrb6uv.1lib.ph/book/1006801/27b23f

C. Ouchi, “Development of steel plates by intensive use of TMCP and direct quenching processes,” ISIJ Int., vol. 41, no. 6, pp. 542–553, 2001, doi: 10.2355/isijinternational.41.542.

C. S. Lee and W. Y. Choo, “Effects of austenite conditioning and hardenability on mechanical properties of B-containing high strength steels,” ISIJ Int., vol. 40, no. SUPPL., pp. 189–193, 2000, doi: 10.2355/isijinternational.40.suppl_s189.

J. Y. YOO, W. Y. CHO, T. W. PARK, and Y. W. KIM, “Microstructures and age hardening characteristics of direct quenched Cu bearing HSLA steel,” ISIJ Int., vol. 35, no. 8, pp. 1034–1040, 1995, doi: 10.2355/isijinternational.35.1034.

Y. Yamada and T. Kuwabara, Material for Springs, 1st ed. Springer-Verlag Berlin Heidelberg, 2007. [Online]. Available: lib-6r2hdtgfpqoh4uxuxqmrsxbg.1lib.cz/book/2096070/7c9d47

H. Chandra, D. K. Pratiwi, and M. Zahir, “High-temperature quality of accelerated spheroidization on SUP9 leaf spring to enhance machinability,” Heliyon, vol. 4, no. 12, p. e01076, 2018, doi: 10.1016/j.heliyon.2018.e01076.

V. K. Arora, G. Bhushan, and M. L. Aggarwal, “Fatigue Life Assessment of 65Si7 Leaf Springs: A Comparative Study,” Int. Sch. Res. Not., vol. 2014, pp. 1–11, 2014, doi: 10.1155/2014/607272.

S. Lee, C. Lee, and Y. Cho, “Effect on aqua quenching of spring steel(JIS SUP 9),” Mater. Sci. Forum, vol. 566, pp. 249–254, 2008, doi: 10.4028/www.scientific.net/msf.566.249.

Harry Chandler, Heat treater’s guide: Practices and procedures for irons and steels, 2nd ed. ASM International, 1995. [Online]. Available: https://lib-63vsc6hn5osfsnoz7ztrb6uv.1lib.ph/book/1101745/4071bc

S.-H. Lee and D.-S. Shim, “Effect of shot peening on fatigue life of heat treated spring steel,” J. Korean Soc. Heat Treat., vol. 17, no. 6, pp. 336–341, 2004, [Online]. Available: https://koreascience.kr/article/JAKO200423943540241.page

B. P. Bhardwaj, “The Complete Book on Production of Automobile Components & Allied Products.” p. 536, 2014. [Online]. Available: http://books.google.com/books?id=YgaJAgAAQBAJ&pgis=1

X. Tao, C. Li, L. Han, and J. Gu, “Microstructure evolution and mechanical properties of X12CrMoWVNbN10-1-1 steel during quenching and tempering process,” J. Mater. Res. Technol., vol. 5, no. 1, pp. 45–57, 2016, doi: 10.1016/j.jmrt.2015.06.001.

C. Wang, H. Qiu, Y. Kimura, and T. Inoue, “Morphology, crystallography, and crack paths of tempered lath martensite in a medium-carbon low-alloy steel,” Mater. Sci. Eng. A, vol. 669, pp. 48–57, 2016, doi: 10.1016/j.msea.2016.05.041.

W. D. Callister and J. Wiley, Materials Science, 7th ed., vol. 208, no. 4439. John Wiley & Sons, Inc., 2007. doi: 10.1126/science.208.4439.30.

Y. Handoyo, “Pengaruh quenching dan tempering pada baja Jis grade S45C terhadap sifat mekanis dan struktur mikro crankshaft,” J. Ilm. Tek. Mesin, vol. 3, no. 2, pp. 102–115, 2015, [Online]. Available: https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=Pengaruh+quenching+dan+tempering+pada+baja+Jis+grade+S45C&btnG=

ASTM E18-02, “Standard test methods for rockwell hardness and rockwell superficial hardness of metallic materials,” Annu. B. ASTM Stand., vol. 01, pp. 1–15, 2005.

ASTM E8, “ASTM E8/E8M standard test methods for tension testing of metallic materials 1,” Annu. B. ASTM Stand. 4, vol. 02, no. C, pp. 1–27, 2010, doi: 10.1520/E0008.

ASTM E 23, “Standard test methods for notched bar impact testing of metallic materials,” Annu. B. ASTM Stand., vol. 14, no. 1, pp. 1–26, 2012.

ASTM E2809-13, Standard guide for using Scanning Electron Microscopy/X-Ray Spectrometry in forensic paint examinations. 2003. [Online]. Available: https://www.astm.org/e2809-13.html

B. Laxmi, S. Sharma, J. PK, and A. Hegde, “Quenchant oil viscosity and tempering temperature effect on mechanical properties of 42CrMo4 steel,” J. Mater. Res. Technol., vol. 16, pp. 581–587, 2022, doi: 10.1016/j.jmrt.2021.11.152.

A. Saha, D. K. Mondal, and J. Maity, “Effect of cyclic heat treatment on microstructure and mechanical properties of 0.6wt% carbon steel,” Mater. Sci. Eng. A, vol. 527, no. 16–17, pp. 4001–4007, 2010, doi: 10.1016/j.msea.2010.03.003.

M. Badaruddin, Sugiyanto, H. Wardono, Andoko, C. J. Wang, and A. K. Rivai, “Improvement of low-cycle fatigue resistance in AISI 4140 steel by annealing treatment,” Int. J. Fatigue, vol. 125, no. April, pp. 406–417, 2019, doi: 10.1016/j.ijfatigue.2019.04.020.

S. H. Avner, Introduction to physical metallury, 2nd ed. McGraw-Hill Inc, 1974. [Online]. Available: https://lib-63vsc6hn5osfsnoz7ztrb6uv.1lib.ph/book/2712128/41c068

Y. Weng, Ultra-fing grained steels. Springer, 2009. [Online]. Available: https://lib-63vsc6hn5osfsnoz7ztrb6uv.1lib.ph/book/594682/c9d994

R. Padmanabhan and W. E. Wood, “Microstructural analysis of a multistage heat-treated ultrahigh strength low alloy steel,” Mater. Sci. Eng., vol. 66, no. 2, pp. 125–143, 1984, doi: 10.1016/0025-5416(84)90175-7.




DOI: http://dx.doi.org/10.30811/jpl.v21i2.3523

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia