Implementation of PID Controller on Hohenheim Tunnel Dryer Using Ziegler-Nichols Approach Method

Melinda Melinda, Rita Khatir, Ari Rahmat Putra Ibina, Alfatirta Mufti, Rizal Syahyadi, Iskandar Hasanuddin

Abstract


Hohenheim Tunnel Dryer has two heating mechanisms, namely the solar collectors and the greenhouse effect. Two outlet fans are used to remove moisture from drying as well as to lower the temperature in the drying chamber. Suppose the outlet fans are turned on continuously, the temperature in the drying room will not reach the optimal drying temperature, and vice versa if the outlet fans are not turned on, the drying temperature can exceed 60°C. Controlling these outlet fans manually is a very inconvenient thing and becomes an obstacle for accepting this drying technology by the farmers. Therefore, this study focused on the design of temperature control for the Hohenheim Tunnel Dryer by using a proportional integral derivative (PID) controller with an Arduino Nano microcontroller. It controls the fan outlet to obtain an optimal drying temperature so that the operation of this dryer becomes more accessible and more efficient. The temperature sensor used is DHT22. The tuning method chosen is the Ziegler – Nichols method, and the setpoint value is selected at 55, which is the optimum temperature for drying most agricultural products. The design, manufacture, and testing of the temperature control system on the Hohenheim tunnel dryer was successfully carried out without over shoot and steady state error so it can be concluded that the system has worked well.


Keywords


Hohenheim Tunnel Dryer; Temperature Control; PID Controller; drying room, temperature sensor

Full Text:

PDF

References


P. Siagian, E. Y. Setyawan, T. Gultom, F. H. Napitupulu, and H. Ambarita, “A field survey on coffee beans drying methods of Indonesian small holder farmers,” 2017, doi: 10.1088/1757-899X/237/1/012037.

M. R. Okos, O. Campanella, G. Narsimhan, R. K. Singh, and A. C. Weitnauer, Food Dehydration. 2019.

R. Khathir, S. Hartuti, and N. Fadillah, “The quality assessment on fermented virgin coconut oil treated under microwave heating,” 2021, doi: 10.1088/1755-1315/644/1/012046.

R. Khathir, R. Agustina, S. Hartuti, and Z. Fahmi, “Improving fermented virgin coconut oil quality by using microwave heating,” 2020, doi: 10.1088/1755-1315/425/1/012068.

M. Pramudia, A. Salim, and T. Prasetyo, “Prototype Design of Automatic Anchovy Drying Robot Using Arduino ATmega 2560,” 2020, doi: 10.1088/1742-6596/1569/3/032076.

V. C. Poekoel, J. I. Litouw, R. F. Robot, P. D. K. Manembu, and F. D. Kambey, “Implementation of Automatic In-store Dryer for Improving Agriculture Product,” J. Sustain. Eng. Proc. Ser., 2019, doi: 10.35793/joseps.v1i1.15.

F. Khalil, L. Nelwan, and I. D. Subrata, “Design of Control System for Grain Drying with Solar Collector and Heat Storage,” J. Keteknikan Pertan., 2016, doi: 10.19028/jtep.04.1.87-96.

R. Khathir, R. Agustina, B. S. Putra, and Rahmadi, “The Quality of Elephant Ginger Dried by Using Modified Hohenheim Dryer under Tropical Climate,” 2020, doi: 10.1088/1755-1315/494/1/012003.

A. Fahruzi and R. Rhamdany, “An Automatic Grain Dryer Prototype Using the PID Method as Temperature Controller,” 2020, doi: https://doi.org/10.25139/inform.v0i1.2720.

H. Heriansyah, S. Istiqphara, and N. Adliani, “Design of Temperature Control for Herbal Dryer based on PID Controller by Utilizing Renewable Energy Sources,” J. Ecotipe (Electronic, Control. Telecommun. Information, Power Eng., 2019, doi: 10.33019/ecotipe.v6i2.1392.

W. Tang, R. Yang, and Z. Sun, “Application of the PID Parameters Optimization Based on Improved Genetic Algorithm in Blow-through Steam Flow Rate Control,” Zhongguo Zaozhi Xuebao/Transactions China Pulp Pap., 2019, doi: 10.11981/j.issn.1000-6842.2019.01.60.

F. R. Rubio, C. Bordons, J. Holgado, and I. S. Rivas, “Modelling and PID Control of a Rotary Dryer,” IFAC Proc. Vol., vol. 33, no. 4, pp. 113–118, Apr. 2000, doi: 10.1016/S1474-6670(17)38230-7.

A. Zoukit, H. El Ferouali, I. Salhi, S. Doubabi, and N. Abdenouri, “Takagi Sugeno fuzzy modeling applied to an indirect solar dryer operated in both natural and forced convection,” Renew. Energy, 2019, doi: 10.1016/j.renene.2018.10.082.

M. F. B. Pramono and B. Z. Arifin, “Design of Dryer Coconut for Copra Production Using Fuzzy Logic Control,” 2020, doi: 10.1109/ICISS50791.2020.9307589.

A. Dai, X. Zhou, and X. Liu, “Design and simulation of a genetically optimized fuzzy immune PID controller for a novel grain dryer,” IEEE Access, 2017, doi: 10.1109/ACCESS.2017.2733760.

A. M. Khin and A. M. Thwe, “Fuzzy Logic Based Dryer Controller,” Int. J. Adv. Sci. Res. Eng., 2020, doi: 10.31695/ijasre.2020.33795.

S. Malaisamy, A. Srinivasan, M. Mohamed Rafiq, and M. Manimaran, “Power optimization and temperature control in solar powered automated dryer using fuzzy controller,” Int. J. ChemTech Res., 2016.

A. Zoukit, H. El Ferouali, I. Salhi, S. Doubabi, and N. Abdenouri, “Fuzzy modeling of a hybrid solar dryer: Experimental validation,” J. Energy Syst., 2019, doi: 10.30521/jes.457645.

K. Ogata and J. W. Brewer, “Modern Control Engineering,” J. Dyn. Syst. Meas. Control, 1971.

A. Wolfgang, “Practical Process Control for Engineers and Technicians”. 2005.

I. Zulkifle, M. H. H. Ruslan, M. Y. H. Othman, Z. Ibarahim, and K. Sopian, “Drying of asam gelugur (Garcinia atroviridis) using solar drying system,” J. Teknol., vol. 80, no. 5, 2018, doi: 10.11113/jt.v80.11822.

N. A. Majid, Z. Mohamed, and M. A. Mohd Basri, “Velocity control of a unicycle type of mobile robot using optimal pid controller,” J. Teknol., vol. 78, no. 7–4, 2016, doi: 10.11113/jt.v78.9415.

C. C. Soon, R. Ghazali, H. I. Jaafar, and S. Y. S. Hussien, “PID controller tuning optimization using gradient descent technique for an electro-hydraulic servo system,” J. Teknol., vol. 77, no. 21, 2015, doi: 10.11113/jt.v77.6605.

R. Yusof, M. Khalid, and S. Omatu, “Some Interpretations Of Self-Tuning Pid Controllers,” J. Teknol., 1994, doi: 10.11113/jt.v23.1079.

A. Dehghani and H. Khodadadi, “Self-tuning PID controller design using fuzzy logic for a single-link flexible joint robot manipulator,” J. Teknol., vol. 78, no. 6–13, 2016, doi: 10.11113/jt.v78.9282.




DOI: http://dx.doi.org/10.30811/jpl.v21i1.3472

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia