The Effect of SiC and Cu Weight Fraction on the Characteristics of Al 6061 Composite

Sumarji Sumarji, Danny Febriansyah, Mahros Darsin, Wazirotus Sakinah, R. Puranggo Ganjar Widityo

Abstract


Composites are made of multiple materials that are combined to create new materials with better properties. The purpose of this study is to determine the effects of SiC and Cu weight fractions on hardness, tensile strength, microstructure and scanning electron microscopy (SEM) of Al 6061 composites. The manufacturing method used for creating composites in this study was stir-casting. Each composite component and its functions are as follows: aluminum 6061 as the matrix, silicon carbide (SiC) as a reinforcement, and copper (Cu) functions to improve the characteristics of the composite. Variations were made by weight composition of SiC (1%, 3%, and 5%) and Cu (5% and 8%). Observations were carried out on their hardness, tensile strength, and microstructure; each of which using Rockwell hardness test B (ASTM E 18 standard), a multipurpose tensile testing machine, and SEM, respectively. The results of this study indicate that the addition of SiC and Cu affects the aluminum 6061 characteristics. The best result of the hardness test was shown at Al6061 + 5% SiC + 8% Cu (109.37 HRB). The best tensile strength (UTS) test result was shown at Al6061 + 5% SiC + 8% Cu (211.8 MPa) with elongation number of 2.8%. There has been a significant reduction in grain size under micro observations that occurred very well but was still relatively not uniform. The result of several SEM observation phases formed by the combination of Al6061 and the addition of 5% SiC + 5% Cu and 8% Cu showed an observation phase of AlZnMgCu, α (Al) + AlZnMgCu, Al2Cu, and Al2CuMg.


Keywords


Metal Matrix Composites, stir casting, Al6061, SiC, Cu.

Full Text:

PDF

References


R. Agnihotri and S. Dagar, “Mechanical Properties of Al-SiC Metal Matrix Composites Fabricated by Stir Casting Route,” Res. Med. Eng. Sci., vol. 2, no. 5, pp. 178–183, 2017, doi: 10.31031/RMES.2017.02.000549.

M. H. Rahman and H. M. M. Al Rashed, “Characterization of silicon carbide reinforced aluminum matrix composites,” Procedia Eng., vol. 90, pp. 103–109, 2014, doi: 10.1016/j.proeng.2014.11.821.

N. K. Maurya, M. Maurya, A. K. Srivastava, S. P. Dwivedi, A. Kumar, and S. Chauhan, “Investigation of mechanical properties of Al 6061/SiC composite prepared through stir casting technique,” Mater. Today Proc., vol. 25, pp. 755–758, 2020, doi: 10.1016/j.matpr.2019.09.003.

S. Sivananthan, K. Ravi, and C. S. Jerold, “Effect of SiC particles reinforcement on mechanical properties of aluminium 6061 alloy processed using stir casting route,” Mater. Today Proc., vol. 21, no. April 2020, pp. 968–970, 2020, doi: 10.1016/j.matpr.2019.09.068.

K. Bandil et al., “Microstructural, mechanical and corrosion behaviour of Al–Si alloy reinforced with SiC metal matrix composite,” J. Compos. Mater., vol. 53, no. 28–30, pp. 4215–4223, 2019, doi: 10.1177/0021998319856679.

A. O. Inegbenebor, C. A. Bolu, P. O. Babalola, A. I. Inegbenebor, and O. S. I. Fayomi, “Aluminum Silicon Carbide Particulate Metal Matrix Composite Development Via Stir Casting Processing,” Silicon, vol. 10, no. March, pp. 343–347, 2018, doi: 10.1007/s12633-016-9451-7.

S. Sumarji, N. F. Albajili, M. Darsin, R. R. Sakura, and A. Sanata, “Effect of Variation of SiC Mass Fraction on Mechanical Properties of Al-SiC Composite Using Stir Casting Method,” J. Mech. Eng. Sci. Technol., vol. 6, no. 1, p. 23, 2022, doi: 10.17977/um016v6i12022p023.

S. Lal, S. Kumar, A. Kumar, L. Patel, and Aniruddha, “Fabrication and characterization of hybrid metal matrix composite Al-2014/SiC/fly ash fabricated using stir casting process,” Mater. Today Proc., vol. 49, no. xxxx, pp. 3155–3163, 2022, doi: 10.1016/j.matpr.2020.11.168.

R. S. Rana, R. Purohit, and S. Das, “Reviews on the Influences of Alloying elements on the Microstructure and Mechanical Properties of Aluminum Alloys and Aluminum Alloy Composites,” Int. J. Sci. Res. Publ., vol. 2, no. 6, pp. 1–7, 2012, doi: 10.1177/0040517512445340.

M. Tayebi, M. Tayebi, M. Rajaee, and V. Ghafarnia, “Improvement of thermal properties of Al / Cu / SiC composites by tailoring the reinforcement microstructure and comparison to thermoelastic models,” J. Alloys Compd., vol. 853, p. 156794, 2021, doi: 10.1016/j.jallcom.2020.156794.

Sumarji, S. Junus, R. R. Sakura, M. Asrofi, and A. Wafi, “The effect of sic and addition mg volume fraction on characteristics All6061-SiC composite,” Int. J. Sci. Technol. Res., vol. 9, no. 4, pp. 1247–1250, 2020.

W. Y. Zhang, Y. H. Du, and P. Zhang, “Vortex-free stir casting of Al-1.5 wt% Si-SiC composite,” J. Alloys Compd., vol. 787, pp. 206–215, 2019, doi: 10.1016/j.jallcom.2019.02.099.

T. Tamilanban and T. S. Ravikumar, “Influence of stirring speed on stir casting of SiC reinforced Al Mg Cu composite,” Mater. Today Proc., vol. 45, no. xxxx, pp. 5899–5902, 2020, doi: 10.1016/j.matpr.2020.08.633.

M. K. Sahu and R. K. Sahu, “Fabrication of Aluminum Matrix Composites by Stir Casting Technique and Stirring Process Parameters Optimization,” Adv. Cast. Technol., 2018, doi: 10.5772/intechopen.73485.

C. Tekmen and U. Cocen, “The effect of Si and Mg on age hardening behavior of Al-SiCp composites,” J. Compos. Mater., vol. 37, no. 20, pp. 1791–1800, 2003, doi: 10.1177/002199803035181.

S. S. Adisetiaji and Sulardjaka, “[Effect of weight percentage of SiC powder on tensile strength and impact toughness of HPDC product AlSiMgTiB-SiC composite],” J. Tek. Mesin S-1, vol. 4, no. 1, pp. 89–98, 2016, [Online]. Available: https://ejournal3.undip.ac.id/index.php/jtm/article/view/12840

A. Meselhy and M. Reda, “Investigation of mechanical properties of nanostructured Al-SiC composite manufactured by accumulative roll bonding,” J. Compos. Mater., vol. 53, pp. 28–30, 2019, doi: 10.1177/0021998319851831.

P. B. Li, T. J. Chen, and H. Qin, “Effects of mold temperature on the microstructure and tensile properties of SiC p / 2024 Al-based composites fabricated via powder thixoforming,” Mater. Des., vol. 112, pp. 34–45, 2016, doi: 10.1016/j.matdes.2016.09.049.




DOI: http://dx.doi.org/10.30811/jpl.v21i1.3280

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia