Photovoltaic (PV) thermal performance simulation using segmentation lapping fin passive cooling

Ahmad Yonanda, Amrizal Amrizal, Harmen Harmen, Ahmad Riszal, Fauzi Ibrahim

Abstract


The sun is a renewable energy source that has several advantages such as being easy to obtain, free of pollution, and available in sufficient quantities. The heat energy received by the photovoltaic can cause an increase in surface temperature, resulting in a decrease in electrical efficiency. One of the efforts to increase photovoltaic electrical efficiency is using air cooling, by adding absorber fins or thermal photovoltaic (PV/T). The lapping type fin has superior performance in reducing the temperature of the PV module compared to the linear (conventional) fin type. The purpose of this study was to compare the performance of thermal PV using conventional fins with lapping segmentation fins carried out using the CFD approach using ANSYS Fluent. The simulation test procedures include: making linear fin geometry (conventional), linear lapping and segmentation lapping, conducting mesh quality studies, and determining boundary conditions and modeling parameters. Modeling variations in the direction of airflow 0°, 15°, 30°, 45°, 60°, 75°, and 90°. The numerical simulation results show that the use of segmented lapping fins can reduce the PV surface temperature by 1.79 °C or about 4.11% compared to conventional (linear) lapping in the airflow direction of 90º (parallel to the fins). The results of this study support the use of integrated PV and passive cooling systems to reduce efficiency losses in actual conditions, where there is a multidirectional airflow characteristic, which may not be advantageous for conventional heatsinks.

Keywords


Air cooling, fin lapping, thermal performance, photovoltaic, and simulation CFD

Full Text:

PDF

References


N. Amrizal, D. Chemisana, J. I. Rosell, and J. Barrau, “A dynamic model based on the piston flow concept for the thermal characterization of solar collectors,” Appl. Energy, vol. 94, pp. 244–250, Jun. 2012, doi: 10.1016/j.apenergy.2012.01.071.

N. Amrizal, D. Chemisana, and J. I. Rosell, “Hybrid photovoltaic–thermal solar collectors dynamic modeling,” Appl. Energy, vol. 101, pp. 797–807, Jan. 2013, doi: 10.1016/j.apenergy.2012.08.020.

J. Deng et al., “Validation of a simple dynamic thermal performance characterization model based on the piston flow concept for flat-plate solar collectors,” Sol. Energy, vol. 139, pp. 171–178, Dec. 2016, doi: 10.1016/j.solener.2016.09.040.

S. Abdul Hamid, M. Yusof Othman, K. Sopian, and S. H. Zaidi, “An overview of photovoltaic thermal combination (PV/T combi) technology,” Renew. Sustain. Energy Rev., vol. 38, pp. 212–222, Oct. 2014, doi: 10.1016/j.rser.2014.05.083.

G. Kumaresan, P. Sudhakar, R. Santosh, and R. Velraj, “Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors,” Renew. Sustain. Energy Rev., vol. 77, pp. 1363–1374, Sep. 2017, doi: 10.1016/j.rser.2017.01.171.

A. M. Elbreki, K. Sopian, A. Fazlizan, and A. Ibrahim, “An innovative technique of passive cooling PV module using lapping fins and planner reflector,” Case Stud. Therm. Eng., vol. 19, p. 100607, Jun. 2020, doi: 10.1016/j.csite.2020.100607.

A. E. Boubekri et al., “Effects of Cr substitution on the low temperature magnetization behavior in amorphous Fe68+Cr12-Si8B12 ribbons,” J. Non-Cryst. Solids, vol. 551, p. 120437, Jan. 2021, doi: 10.1016/j.jnoncrysol.2020.120437.

S. S. Moy, “Response to the letter by Dubey et al. (2013),” Neurotoxicol. Teratol., vol. 41, p. 97, Jan. 2014, doi: 10.1016/j.ntt.2013.10.006.

H. A. Zondag, R. de Boer, S. F. Smeding, and J. van der Kamp, “Development of industrial PCM heat storage lab prototype,” Energy Procedia, vol. 135, pp. 115–125, Oct. 2017, doi: 10.1016/j.egypro.2017.09.495.

“main - A new passive PV heatsink design to reduce efficiency losses A.pdf.”

M. Hasanuzzaman, A. B. M. A. Malek, M. M. Islam, A. K. Pandey, and N. A. Rahim, “Global advancement of cooling technologies for PV systems: A review,” Sol. Energy, vol. 137, pp. 25–45, Nov. 2016, doi: 10.1016/j.solener.2016.07.010.

J. G. Hernandez-Perez, J. G. Carrillo, A. Bassam, M. Flota-Banuelos, and L. D. Patino-Lopez, “Thermal performance of a discontinuous finned heatsink profile for PV passive cooling,” Appl. Therm. Eng., vol. 184, p. 116238, Feb. 2021, doi: 10.1016/j.applthermaleng.2020.116238.

J. Kim and Y. Nam, “Study on the Cooling Effect of Attached Fins on PV Using CFD Simulation,” Energies, vol. 12, no. 4, p. 758, Feb. 2019, doi: 10.3390/en12040758.

T. Wongwuttanasatian, T. Sarikarin, and A. Suksri, “Performance enhancement of a photovoltaic module by passive cooling using phase change material in a finned container heat sink,” Sol. Energy, vol. 195, pp. 47–53, Jan. 2020, doi: 10.1016/j.solener.2019.11.053.

A. M. Elbreki, A. F. Muftah, K. Sopian, H. Jarimi, A. Fazlizan, and A. Ibrahim, “Experimental and economic analysis of passive cooling PV module using fins and planar reflector,” Case Stud. Therm. Eng., vol. 23, p. 100801, Feb. 2021, doi: 10.1016/j.csite.2020.100801.

A. Yonanda, “Karakteristik Kolektor Surya Pelat Datar Aliran Spiral Menggunakan Metode Simulasi CFD,” vol. 01, no. 01, p. 14, 2021.




DOI: http://dx.doi.org/10.30811/jpl.v20i2.3041

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia