Photovoltaic (PV) thermal performance simulation using segmentation lapping fin passive cooling
Abstract
Keywords
Full Text:
PDFReferences
N. Amrizal, D. Chemisana, J. I. Rosell, and J. Barrau, “A dynamic model based on the piston flow concept for the thermal characterization of solar collectors,” Appl. Energy, vol. 94, pp. 244–250, Jun. 2012, doi: 10.1016/j.apenergy.2012.01.071.
N. Amrizal, D. Chemisana, and J. I. Rosell, “Hybrid photovoltaic–thermal solar collectors dynamic modeling,” Appl. Energy, vol. 101, pp. 797–807, Jan. 2013, doi: 10.1016/j.apenergy.2012.08.020.
J. Deng et al., “Validation of a simple dynamic thermal performance characterization model based on the piston flow concept for flat-plate solar collectors,” Sol. Energy, vol. 139, pp. 171–178, Dec. 2016, doi: 10.1016/j.solener.2016.09.040.
S. Abdul Hamid, M. Yusof Othman, K. Sopian, and S. H. Zaidi, “An overview of photovoltaic thermal combination (PV/T combi) technology,” Renew. Sustain. Energy Rev., vol. 38, pp. 212–222, Oct. 2014, doi: 10.1016/j.rser.2014.05.083.
G. Kumaresan, P. Sudhakar, R. Santosh, and R. Velraj, “Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors,” Renew. Sustain. Energy Rev., vol. 77, pp. 1363–1374, Sep. 2017, doi: 10.1016/j.rser.2017.01.171.
A. M. Elbreki, K. Sopian, A. Fazlizan, and A. Ibrahim, “An innovative technique of passive cooling PV module using lapping fins and planner reflector,” Case Stud. Therm. Eng., vol. 19, p. 100607, Jun. 2020, doi: 10.1016/j.csite.2020.100607.
A. E. Boubekri et al., “Effects of Cr substitution on the low temperature magnetization behavior in amorphous Fe68+Cr12-Si8B12 ribbons,” J. Non-Cryst. Solids, vol. 551, p. 120437, Jan. 2021, doi: 10.1016/j.jnoncrysol.2020.120437.
S. S. Moy, “Response to the letter by Dubey et al. (2013),” Neurotoxicol. Teratol., vol. 41, p. 97, Jan. 2014, doi: 10.1016/j.ntt.2013.10.006.
H. A. Zondag, R. de Boer, S. F. Smeding, and J. van der Kamp, “Development of industrial PCM heat storage lab prototype,” Energy Procedia, vol. 135, pp. 115–125, Oct. 2017, doi: 10.1016/j.egypro.2017.09.495.
“main - A new passive PV heatsink design to reduce efficiency losses A.pdf.”
M. Hasanuzzaman, A. B. M. A. Malek, M. M. Islam, A. K. Pandey, and N. A. Rahim, “Global advancement of cooling technologies for PV systems: A review,” Sol. Energy, vol. 137, pp. 25–45, Nov. 2016, doi: 10.1016/j.solener.2016.07.010.
J. G. Hernandez-Perez, J. G. Carrillo, A. Bassam, M. Flota-Banuelos, and L. D. Patino-Lopez, “Thermal performance of a discontinuous finned heatsink profile for PV passive cooling,” Appl. Therm. Eng., vol. 184, p. 116238, Feb. 2021, doi: 10.1016/j.applthermaleng.2020.116238.
J. Kim and Y. Nam, “Study on the Cooling Effect of Attached Fins on PV Using CFD Simulation,” Energies, vol. 12, no. 4, p. 758, Feb. 2019, doi: 10.3390/en12040758.
T. Wongwuttanasatian, T. Sarikarin, and A. Suksri, “Performance enhancement of a photovoltaic module by passive cooling using phase change material in a finned container heat sink,” Sol. Energy, vol. 195, pp. 47–53, Jan. 2020, doi: 10.1016/j.solener.2019.11.053.
A. M. Elbreki, A. F. Muftah, K. Sopian, H. Jarimi, A. Fazlizan, and A. Ibrahim, “Experimental and economic analysis of passive cooling PV module using fins and planar reflector,” Case Stud. Therm. Eng., vol. 23, p. 100801, Feb. 2021, doi: 10.1016/j.csite.2020.100801.
A. Yonanda, “Karakteristik Kolektor Surya Pelat Datar Aliran Spiral Menggunakan Metode Simulasi CFD,” vol. 01, no. 01, p. 14, 2021.
DOI: http://dx.doi.org/10.30811/jpl.v20i2.3041
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .
Alamat Surat :
Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia