Pla-zno nanocomposite paper for antimicrobial packaging application

Teuku Rihayat, Suryani Suryani, Adi Saputra Ismi, Nurhanifa Nurhanifa, Shafira Riskina


Many food packages (plastic wrappers) today cannot be broken down by the environment. therefore, it is necessary to add natural substances that can make the food package decompose and be resistant to contamination with bacteria. Development of biodegradable polymers from renewable sources is highly desirable for food preservation and packaging, provided they can be effective as plastics or paper that are currently used in packaging, protecting food against microbial contamination, physical damage and chemical reactions (eg oxidation). Poly lactic acid (PLA) is one of the natural polymers produced by several bacteria that grow in crops rich in carbohydrates (such as sugar beets, corn and others). This research aims to insert ZnO nanoparticles and chitosan into a plastic layer of PLA (poly lactic acid) which can improve the antibacterial properties of the resulting packaging. The method used in making PLA-ZnO-chitosan nanocomposite is the precipitation method and the heating method. PLA-ZnO nanocomposites were obtained by varying ZnO nanoparticles 0.5% by weight, 2% by weight, and 3.5% by weight. The results obtained in SEM images show that nanoparticles are homogeneously distributed on the plastic surface. Antimicrobial tests show nanocomposites work effectively in deactivating E. coli and S. aureus. where it was found that E. coli was more susceptible to this type of nanocomposite, where there was a reduction of 3.4 logs to 3.5% ZnO loading in the PLA layer.



Nanocomposite, ZnO nanoparticles, PolyLactic Acid, Antimicrobials.

Full Text:



Z. Zulkifli dan I.B. Dharmawan, “Analisa Pengaruh Perlakuan Alkalisasi dan Hydrogen Peroksida terhadap Kekuatan Mekanik Komposit Serat Sabut Kelapa Bermatriks Epoxy”, J.POLIMESIN, Vol. 17, No. 1, pp 41-46, 2019.

A. Dabet, I. Indra dan H. Hafli, “Aplikasi Teknik Manufaktur Vacuum Assested Resin Infusion (VARI) untuk Peningkatan Sifat Mekanik Komposit Plastik Berpenguat Serat Abaca (AFRP)”, J.POLIMESIN. Vol. 16, No. 1, pp. 19-24, 2018.

I. Mawardi, A. Azwar dan A. Rizal, “Kajian Perlakuan Serat Sabut Kelapa terhadap Sifat Mekanis Komposit Epoksi Serat Sabut Kelapa”, J.POLIMESIN, Vol. 15, No. 1, pp. 22-29, 2017.

S. Khalloufi, J. Giasson, C. Ratti,”Activity of freeze-dried mushrooms and fruit”, Can Agr Eng, Vol.42, pp. 51-56. 2000.

A. Cagri, Z. Ustunol, ET Rysers, “Antimicrobial edible films and coatings”, J Food Protect, Vol. 67, pp. 833-843, 2004.

M. Vargas, A. Albors, A. Chiralt, C. Gonzalez-Martinez, “Characterization of chitosan-oleic acid composite films”, Food Hydrocolloids, vol. 23, pp. 536-547. 2009.

G. Findenig; S. Leimgruber; R. Kargl; S. Spirk; K. Stana-Kleinschek; V. Ribitsch, “Making Water Barrier Coatings from Hydrophilic Components”, ACS Appl. Mater. Interface, vol. 4, pp. 3199-3206, 2012.

Bourtoom, MS Chinnan, “Preparation and properties of rice starch-chitosan mixed biodegradable film”, LWT-Food Sci Technol, vol. 41, pp. 1633-1641, 2008.

Bertuzzi, EF Castro Vidaurre, M. Armada, JC Gottifredi, “Water-Permeability Edible Starch-Based Films”, Journal Of Food Engineering, vol. 80. pp. 972-978. 2007.

Perez-Mateos, P. Montero, MC Gomez-Guillen, “Formulation and stability of biodegradable films made from cod gelatin and sunflower oil mixtures”, Food Hydrocolloids, vol. 23, pp. 53-61. 2009.

Sivarooban, NS Hettiarachchy, MG Johnson, “Physical and antimicrobial properties of grape seed extract, nicin, and EDTA incorporated edible film soy protein”, International Food Research, vol. 41, pp. 781-785. 2008.

MA Del Nobile, A. Conte, AL Incoronato, O. Panza, “Antimicrobial efficacy and release of thymol kinetics from zein films”, Journal of Food Engineering, vol. 89. Pp. 57-63. 2008.

P. Suppakul, J. Miltz, K. Sonneveld, SW Bigger, “Active packaging technology with an emphasis on antimicrobial packaging and application”, Journal of Food Science, vol. 68. Pp. 408-420. 2003.

Javidi, Z., Hosseini, S. F., & Rezaei, M. “Devel opment of flexible bactericidal films based on poly(lactic acid) and essential oil and its effectiveness to reduce microbial growth of refrigerated rainbow trout”. LWT – Food Science and Technology, vol. 72, pp.251– 260. 2016.

Marra, A., Silvestre, C., Duraccio, D., & Cimmino, S. “Polylactic acid/zinc oxide biocomposite films for food packaging application”. International Journal of BiologicalMacromolecules, vol. 88, pp. 254–262. 2016.

Duncan, T. V. “Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors”, Journal of colloid and interface science, vol. 363(1), pp. 1-24. 2011.

Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z., & Lin, M. “Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7”. Journal of applied microbiology, vol. 107(4), pp. 1193-1201. 2009.

Llorens, A., Lloret, E., Picouet, P. A., Trbojevich, R., & Fernandez, A. “Metallic-based micro and nanocomposites in food contact materials and active food packaging”. Trends in Food Science & Technology, vol. 24(1), pp. 19-29. 2012.

Martins, N. C., Freire, C. S., Neto, C. P., Silvestre, A. J., Causio, J., Baldi, G., Trindade, T. “Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO. Colloids and Surfaces A”, Physicochemical and Engineering Aspects, vol. 417, pp. 111-119. 2013.

Fernández, A., Picouet, P., & Lloret, E. “Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon”. International Journal of Food Microbiology, vol. 142(1), pp. 222-228. 2010.

Li, X., Xing, Y., Jiang, Y., Ding, Y., & Li, W. “Antimicrobial activities of ZnO powder -coated PVC film to inactivate food pathogens”. International journal of food science & technology, vol. 44(11), pp. 2161-2168. 2010.

Maneerat, C., & Hayata, Y. “Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests”. International journal of food microbiology, vol. 107(2), pp. 99-103. 2006.

Reddy, K. M., Feris, K., Bell, J., Wingett, D. G., Hanley, C., & Punnoose, A. “Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems”. Applied physics letters, vol. 90(21), pp. 213-902. 2007.

El-Feky, O. M., Hassan, E. A., Fadel, S. M., & Hassan, M. L. “Use of ZnO nanoparticles for protecting oil paintings on paper support against dirt, fungal attack, and UV aging”. Journal of Cultural Heritage, vol. 15(2), pp. 165-172. 2014.

Murariu, M., Doumbia, A., Bonnaud, L., Dechief, A. L., Paint, Y., Ferreira, M., Dubois, P. “High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties”. Biomacromolecules, vol. 12(5), pp. 1762-1771. 2011.

Therias, S., Larché, J.-F., Bussière, P.-O., Gardette, J.-L., Murariu, M., & Dubois, P. “Photochemical behavior of polylactide/ZnO nanocomposite films”. Biomacromolecules, vol. 13(10), pp. 3283-3291. 2012.

F. Gu, et al., “Structural Evaluation and greatly improved luminescence from Dy3 + doped ZnO nanocrystals by Li + doping via the combustion method”, Langmuir, vol. 20 (9), pp. 3528 – 3531. 2004.

K. Ravichandrika, P. Kiranmayi, R. Ravikumar, “Synthesis, characterization and antibacterial activity of ZnO nanoparticles”, International Journal of Pharmacy Sciences, vol. 4. 2012.

AK Zak, et al., “Ects the annealing temperature on several structural and optical properties of ZnO nanoparticles”, Ceram. Int. vol. 37 (1). Pp. 393 – 398. 2011.

Pantani, R., Gorrasi, G., Vigliotta, G., Murariu, M., & Dubois, P. “PLA-ZnO 400 nanocomposite films: Water vapor barrier properties and specific end-use characteristics”. European Polymer Journal, vol. 49(11), pp. 3471-3482. 2013.

K. Leja and G. Lewandowicz, “Polymer Biodegradation and Biodegradable Polymers – a Review,” vol. 19, no. 2, pp. 255–266, 2010.

J. Nanosains, “Modifikasi Bentonit ( Clay ) menjadi Organoclay dengan Penambahan Surfaktan,” vol. 2, no. 1, 2009.

K. Fukushima, D. Tabuani, and G. Camino, “Poly lactic acid )/ clay nanocomposites : effect of nature and content of clay on morphology , thermal and thermo-mechanical properties,” Mater. Sci. Eng. C, vol. 32, no. 7, pp. 1790–1795, 2012.

A. Araújo, G. Botelho, M. Oliveira, and A. V Machado, “Applied Clay Science In fl uence of clay organic modi fi er on the thermal-stability of PLA based nanocomposites,” vol. 89, pp. 144–150, 2014.

N. P. Resin, “1. Identification Of The Substance / Preparation And The Company / Undertaking,” no. C, pp. 1–10, 2003.

M. Jamshidian, E. A. Tehrany, M. Imran, and M. Jacquot, “Poly-Lactic Acid : Production , Applications , Nanocomposites , and Release Studies,” vol. 9, pp. 552–571, 2010.

R. Mansa, C. Huang, A. Quintela, F. Rocha, and C. Detellier, “Applied Clay Science Preparation and characterization of novel clay / PLA nanocomposites,” Appl. Clay Sci., vol. 115, pp. 87–96, 2015.

L. Avérous, “Polylactic Acid : Synthesis , Properties and Applications,” pp. 2006–2008, 2008.

C. Kingsland, “PLA : A Critical Analysis,” 2010.

B. Ayana, S. Suin, and B. B. Khatua, “Highly exfoliated eco-friendly thermoplastic starch (TPS) poly (lactic acid)(PLA)/ clay nanocomposites using unmodified nanoclay,” Carbohydr. Polym., vol. 110, pp. 430–439, 2014.

J. Ren, Biodegradable Poly (Lactic Acid): Synthesis, Modification, Processing and Applications

Esmailzadeh, H., Sangpour, P., Shahraz, F., Hejazi, J., & Khaksar, R. “Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes”. Materials Science and Engineering, vol. 58, pp. 1058-1063. 2016.

O. Yamamoto, “Influence of particle size on the antibacterial activity of zinc oxide,” International Journal of Inorganic Materials, 3(7), pp. 643-646. 2001.



  • There are currently no refbacks.





Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.


Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,