Application of the Random Forest Method for UKT Classification at Politeknik Negeri Lhokseumawe

Al Khaidar, Muhammad Arhami, Mustainul Abdi

Sari


Classification is the systematic grouping of objects, ideas, books, or other items into specific classes based on similar characteristics. One of its applications is in the grouping of tuition fees, which are fees paid each semester or academic year based on the student's economic ability. However, there are several issues, such as the placement of underprivileged students into fee groups that are still not appropriate and the limited accuracy of the grouping process due to it being done manually. To address these issues, a classification system was designed using the Random Forest method. Random Forest is a machine learning algorithm that combines multiple decision trees for more accurate predictions. Testing the Random Forest method using cross-validation shows an average accuracy of 95%. Evaluation with a confusion matrix shows an accuracy of 94%, with varying values of precision, recall, and f1-score for each group.

Teks Lengkap:

PDF

Referensi


T. P. Hamakonda and J. N. B. Tairas, Pengantar Klasifikasi Persepuluhan Dewey / oleh Towa P. Jakarta: Gunung Mulia, 2006.

Sulistyo-Basuki, Pengantar ilmu perpustakaan / Sulistyo Basuki. Jakarta: Gramedia Pustaka Utama, 1993.

P. G. Cole and L. Chan, Teaching principles and practice, 2nd ed. New York: Prentice Hall, 1994.

B. Karim and S. Sentinuwo, “Penentuan Besaran Uang Kuliah Tunggal untuk Mahasiswa Baru di Universitas Sam Ratulangi Menggunakan Data Mining,” J. Tek. Inform., vol. 11, no. 1, 2017.

M. Ardiansyah, T. Suharto, and A. S. Farid, “Upaya Penanganan Uang Kuliah Tunggal (UKT) Bermasalah bagi Mahasiswa yang tidak Mampu pada Perguruan Tinggi,” JIIP-Jurnal Ilm. Ilmu Pendidik., vol. 5, no. 10, pp. 4432–4441, 2022.

Kemenristek-Dikti, “Peraturan Menteri Riset, Teknologi, Dan Pendidikan Tinggi Republik Indonesia Nomor 37 Tahun 2018 Tentang Statuta Politeknik Negeri Lhokseumawe.” 2018.

Kemendikbud RI, “Peraturan Menteri Pendidikan Dan Kebudayaan Republik Indonesia Nomor 25 Tahun 2020,” Kementeri. Pendidik. dan Kebud. RI, pp. 1–76, 2020.

Kepmen, Biaya Kuliah Tunggal Dan Uang Kuliah Tunggal Pada Perguruan Tinggi Negeri Di Lingkungan Kementerian Riset, Teknologi. Dan Pendidikan Tinggi Tahun Angkatan, 2018.

F. A. Kurniawan, A. Kurniati, and dkk, “Analisis dan implementasi random forest dan classification dan regression tree (cart) untuk klasifikasi pada misuse intrusion detection system,” in IT Telkom, Program Studi Teknik Informatika, Skripsi, Bandung: IT Telkom, 2011.

T. K. Ho, “Random decision forests,” in Dalam Proceedings of 3rd international conference on document analysis and recognition, 1995, pp. 278–282.

L. Breiman and A. Cutler, “Manual–Setting Up, Using, and Understanding Random Forest V4.0.” 2001.

K. A. Sambodo, M. I. Rahayu, N. Indriasari, and M. Natsir, “Klasifikasi Hutan-Non Hutan Data Alos Palsar Menggunakan Metode Random Forest,” in Prosiding Seminar Nasional Penginderaan Jauh 2014, LAPAN, 2014, pp. 120–127.

L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, 2003.




DOI: http://dx.doi.org/10.30811/jaise.v4i2.6131

Refbacks

  • Saat ini tidak ada refbacks.


 

Indexing :

 

Creative Commons License
Journal of Artificial Intelligence and Software Engineering (JAISE) licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.