Penerapan Metode Hybrid Case Based Dalam Diagnosa Gangguan Kehamilan
Sari
Kehamilan adalah suatu proses di mana seorang wanita mengandung janin dalam rahimnya. Kurangnya pengetahuan tentang gejala-gejala yang terjadi selama kehamilan menjadi masalah yang perlu diatasi. Hasil Riset Kesehatan Dasar menunjukkan bahwa hanya sekitar 44% ibu hamil yang mengetahui tanda bahaya selama kehamilan, yang menyebabkan beberapa gejala penyakit kehamilan diabaikan dan menyebabkan risiko kematian ibu. Untuk mengatasi masalah ini, maka di bangun sebuah sistem pakar dengan menggunakan metode Hybrid Case Based yang mampu memberikan informasi dan diagnosa cepat serta tepat untuk masalah kesehatan gangguan kehamilan pada ibu hamil. Pada sistem ini terdapat 5 penyakit yang akan di diagnosa yaitu anemia, hyperemesis gravidarum, diabetes melitus gestasional, infeksi saluran kemih, dan perdarahan, serta terdapat 25 gejala. Sistem ini menerapkan rumus cosine similarity dalam mengukur similarity antara gejala penyakit yang dialami pasien dengan gejala penyakit yang ada dalam basis kasus. Berdasarkan pengujian tingkat kemiripan, antara gejala – gejala yang dialami pasien dengan basis kasus yang ada, sistem mampu mediagnosa jenis penyakit anemia dengan nilai 95%. Tingkat akurasi sistem pakar dengan total data uji sebanyak 20 didapatkan nilai akurasi sebesar 100%.
Kata kunci: Gangguan Kehamilan, Diagnosa, Sistem Pakar, Hybrid Case Based
Abstract
Pregnancy is a process in which a woman carries a fetus in her womb. Lack of knowledge about the symptoms that occur during pregnancy is a problem that needs to be addressed. Basic Health Research results show that only about 44% of pregnant women know the danger signs during pregnancy, which causes some symptoms of pregnancy diseases to be ignored and causes the risk of maternal death. To overcome this problem, an expert system is built using the Hybrid Case Based method that is able to provide information and diagnose quickly and precisely for health problems of pregnancy disorders in pregnant women. In this system there are 5 diseases that will be diagnosed, namely anemia, hyperemesis gravidarum, gestational diabetes mellitus, urinary tract infection, and bleeding, and there are 25 symptoms. This system applies the cosine similarity formula in measuring the similarity between the symptoms of the disease experienced by the patient and the symptoms of the disease in the case base. Based on testing the level of similarity, between the symptoms experienced by the patient and the existing case base, the system is able to diagnose the type of anemia disease with a value of 95%. The accuracy of the expert system with a total of 20 test data obtained an accuracy value of 100%.
Keywords: Pregnancy Disorders, Diagnosis, Expert System, Hybrid Case Based
Teks Lengkap:
PDFReferensi
M. A. Rizaty, "BPS: Jumlah Penduduk Indonesia Sebanyak 275,77 Juta pada 2022," Data Indonesia, 30 November 2022. [Online]. Available: https://dataindonesia.id/varia/detail/bps-jumlah-penduduk-indonesia-sebanyak-27577-juta-pada-2022#google_vignette. [Accessed 21 Februari 2023].
"Kementerian Pemberdayaan Perempuan Dan Perlindungan Anak Republik Indonesia," 24 November 2022. [Online]. Available: https://www.kemenpppa.go.id/index.php/page/read/29/4243/saatnya-laki-laki-terlibat-untuk-cegah-dan-turunkan-angka-kematian-ibu-aki#. [Accessed 2023 Februari 20].
U. U. W. B. G. a. t. U. N. P. D. WHO, "Trends in Maternal Mortality: 1990 to 2015," World Health Organization, Geneva, 2015.
S. K. d. D. B. Oster Suriani Simarmata, "Determinan Kejadian Komplikasi Persalinan Di Indonesia: Analisis Data Sekunder Riset Kesehatan Dasar 2010," Indonesian Journal of Reproductive Health, pp. 165-174, 2014.
Safriadi, S., Mahlil, M., Hidayat, H. T., Nasir, M., & Anwar, A. (2023, August). The classification of emotion based on human voice by using Mel Frequency Cepstrum Coefficient (MFCC) and Naive Bayes method. In AIP Conference Proceedings (Vol. 2431, No. 1). AIP Publishing.
A. L. SP, "Sistem Pakar Mendiagnosa Penyakit Kolera Menerapkan Metode," Health and Contemporary Technology Journal, vol. 1, pp. 13-19, 2020.
DOI: http://dx.doi.org/10.30811/jaise.v4i1.5397
Refbacks
- Saat ini tidak ada refbacks.
Indexing :
Journal of Artificial Intelligence and Software Engineering (JAISE) licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.