Analisis Propagasi Gelombang Radio Menggunakan Metode Ray Tracing pada Perencanaan Sistem Komunikasi Seluler 5G untuk Wilayah Urban (Studi Kasus Distrik Bisnis di Kota Lhokseumawe)

Yassir Yassir, Ipan Suandi, Syahrul Azmi, Suryati Suryati, Rachmawati Rachmawati

Sari


Implementasi jaringan 5G di lingkungan perkotaan adalah sebuah tantangan yang kompleks. Kehadiran berbagai faktor seperti bangunan, pohon, penghalang, serta kondisi atmosfer seperti hujan dan kabut mempengaruhi propagasi gelombang radio.
Oleh karena itu, perencanaan dan analisis yang akurat tentang karakteristik propagasi di lingkungan perkotaan menjadi penting untuk memastikan efisiensi dan keandalan propagasi gelombang radio dalam sistem komunikasi seluler 5G. Salah satu solusi adalah menggunakan metode ray tracing. Penelitian ini fokus pada karakteristik jalur jamak pada frekuensi mmWave untuk perencanaan
jaringan 5G di kota Lhokseumawe, Aceh, Indonesia. Metode simulasi digunakan untuk mengevaluasi efektivitas metode ray tracing dalam memprediksi propagasi gelombang radio di lingkungan perkotaan. Hasil simulasi menunjukkan peningkatan daya terima seiring dengan bertambahnya jumlah refleksi. Dengan daya pancar 5W, daya terima karena refleksi ganda meningkat sekitar 5,1286 dB dibandingkan dengan refleksi tunggal. Demikian pula, daya terima karena empat refleksi meningkat sekitar 7,4145 dB dibandingkan dengan refleksi tunggal. Lebih banyak refleksi juga berarti area cakupan yang lebih luas. Namun, hasil perhitungan
path loss menunjukkan bahwa material beton menghasilkan path loss yang lebih besar dibandingkan dengan material pantulan sempurna.

Teks Lengkap:

PDF

Referensi


C. S.Inc., “Cisco visual networking index: Global mobile data traffic

forecast update, 2017 – 2022,” Cisco Systems Inc., White Paper, 2019.

[Online].Available:https://www.cisco.com/c/en/us/solutions/collateral/

executive-perspectives/annual-internet-report/white-paper-c11-

html

Z. Pi and F. Khan, "An introduction to millimeter-wave mobile

broadband systems," IEEE Commun. Mag., vol. 49, no. 6, pp. 101-107,

Jun. 2011.

F. Boccardi, R. W. Heath Jr., A. Lozano, T. L. Marzetta, and P.

Popovski, "Five Disruptive Technology Directions for 5G," IEEE

Commun. Mag., vol. 52, no. 2, pp. 74-80, Feb. 2014.

N. Al-falahy and O. Y. K. Alani, "Millimetre Wave Frequency Band as

a Candidate Spectrum for 5G Network Architecture: A Survey,"

Elsevier Phys. Commun., vol. 32, pp. 120-244, 2019.

W. Roh, et al., “Millimeter-Wave Beamforming as an Enabling

Technology for 5G Cellular Communications : Theoretical

Feasibility and Prototype Results,” IEEE Commun. Mag., vol. 52, no. 2,

pp. 106–113, 2014.

F. Boccardi, R. W. H. Jr., A. Lozano, T. L. Marzetta, and P. Popovski,

“Five Disruptive Technology Directions for 5G,” IEEE Commun. Mag.,

vol. 52, no. 2, pp. 74–80, 2014.

S. Z. N. Zool Ambia, et al., “Evolution of H-shaped dielectric resonator

antenna for 5G applications,” Indonesian Journal of Electrical

Engineering and Computer Science (IJEECS), vol. 13, no. 2, pp. 562-

, 2019.

W. Keusgen, R. J. Weiler, M. Peter, M. Wisotzki, and B. Goktepe,

“Propagation measurements and simulations for millimeter-wave

mobile access in a busy urban environment,” in 39th International

Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-

THz), pp. 1–3, 2014.

T. A. Thomas and F. W. Vook, “Investigation into the Effects of

Polarization in the Indoor mmWave Environment,” in IEEE

International Conference on Communications (ICC), pp. 2989–2994,

W. Manan, H. Obeidat, A. Al-Abdullah, R. Abd-Alhameed, and F. Hu,

“Indoor To Indoor And Indoor To Outdoor Millimeter Wave

Propagation Channel Simulations At 26 Ghz, 28 Ghz And 60 Ghz For

G Mobile Networks,” in 11th European Conference on Antennas and

Propagation (EUCAP), pp. 1–11, 2018.

N. Al-falahy and O. Alani, “Network capacity optimisation in

millimetre wave band using fractional frequency reuse,” IEEE

Access, vol. 6, pp. 10924-10932. doi 10.1109/ACCESS.2017.2762338,

W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun,

and F. Aryanfar, “Millimeter-Wave Beamforming as an Enabling

Technologyfor 5G Cellular Communications: Theoretical Feasibility

and PrototypeResults,” IEEE Communications Magazine, vol. 52, no. 2,

pp. 106–113, February 2014.

T. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G.

Wong, J. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave

mobile communications for 5g cellular: It will work!” IEEE Access,

vol. 1, pp. 335–349, 2013.

S. Hur, Y.-J. Cho, T. Kim, J. Park, A. Molisch, K. Haneda, and M.

Peter, “mmWave Spatial Channel Model in Urban Cellular

Environments at 28 GHz,” in European Conference on Antennas and

Propagation (EuCAP), April 2015.

G. R. MacCartney, M. K. Samimi, and T. S. Rappaport,

“Omnidirectional Path Loss Models in New York City at 28 GHz and

GHz,”in Prof. of IEEE PIMRC, 2014.

F. Fuschini, H. El-Sallabi, V. Degli-Esposti, L. Vuokko, D. Guiducci

and P. Vainikainen, “Analysis of Multipath Propagation in Urban

Environment Through Multidimensional Measurements and

Advanced Ray Tracing Simulation,” in IEEE Transactions on

Antennas and Propagation, vol. 56, no. 3, pp. 848-857, March 2015.


Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##

##submission.license.cc.by-sa4.footer##

Creative Commons License

Prosiding Seminar Nasional Politeknik Negeri Lhokseumawe is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

© 2017 All rights reserved |Seminar nasional Politeknik Negeri Lhokseumawe p-ISSN:2598-3954.

.