Analisis Pemanfaatan Material Berubah Fasa Sebagai Pengatur Temperatur Sistem Building Integrated Photovoltaics (BIPV)

Razali Thaib

Sari


Building Integrated Photovoltaic (BIPV) merupakan satu kombinasi antara teknologi elektrikal dari panel surya fotovoltaik (PV) dengan konstruksi bangunan gedung. Panel fotovoltaik diletakkan di kulit terluar bangunan dengan konstruksi yang menopang kepada struktur utama bangunan. Energi radiasi matahari yang tiba pada permukaan PV, sebagian dipantulkan kembali dari permukaan PV sementara sebagian besar diserap dalam panel PV Sebagian energi yang diserap dikonversi menjadi listrik sedangkan sisanya diubah menjadi energi panas yang dapat meningkatkan temperatur permukaan PV yang memiliki dampak negatif pada output
listrik dan efisiensi termal panel PV. Pada penelitian ini telah dilakukan analisis penggunaan material berubah fasa (Phase Change Material, PCM) untuk pengaturan temperatur permukaan panel PV. Dari hasil analisis perpindahan panas dengan menggunakan lilin lebah sebagai PCM memperlihatkan peningkatan 1-3% dari total energi yang dihasilkan panel PV, dibandingkan PV tanpa PCM.


Kata Kunci


Material Berubahan Fasa; Photovoltaic; BIPV; Lilin Lebah; Efisiensi

Teks Lengkap:

PDF

Referensi


P. Eiffert and G. J. Kiss, Building-Integrated Photovoltaic Designs for Commercial and Institutional Structures A Sourcebook for Architects. 2000.

M. Jun Huang, “The effect of using two PCMs on the thermal regulation performance of BIPV systems,” Solar Energy Materials and Solar Cells, vol. 95, no. 3, pp. 957–963, 2011.

P. Hersch and K. Zweibel, Basic photovoltaic principles and methods, vol. 58, no. 12. 1982.

E. Skoplaki and J. A. Palyvos, “On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations,” Solar Energy, vol. 83, no. 5, pp. 614–624, 2009.

H. Zondag, “Thermal and Electrical Yield of a Combi-Panel,”

Proceedings ISES Solar World Congress, vol. III, pp. 96–101, 1999.

P. G. Charalambous, G. G. Maidment, S. A. Kalogirou, and K.

Yiakoumetti, “Photovoltaic thermal (PV/T) collectors: A review,”

Applied Thermal Engineering, vol. 27, no. 2–3, pp. 275–286, 2007.

J. K. Tonui and Y. Tripanagnostopoulos, “Air-cooled PV/T solar

collectors with low cost performance improvements,” Solar Energy, vol. 81, no. 4, pp. 498–511, 2007.

M. Sandberg, “Cooling of Building Integrated Photovoltaics by

Ventilation Air,” IEA-ECB&CS Annex 35, 1999.

B. J. Brinkworth, R. H. Marshall, and Z. Ibarahim, “A validated model of naturally ventilated PV cladding,” Solar Energy, vol. 69, no. 1, pp. 67–81, 2000.

B. Moshfegh and M. Sandberg, “Flow and heat transfer in the air gap behind photovoltaic panels,” Renewable and Sustainable Energy Reviews, vol. 2, no. 3, pp. 287–301, 1998.

G. Y. Yun, M. McEvoy, and K. Steemers, “Design and overall energy performance of a ventilated photovoltaic facade,” Solar Energy, vol. 81, no. 3, pp. 383–394, 2007.

K. A. Moharram, “Enhancing the performance of photovoltaic panels by water cooling,” Ain Shams Engineering Journal, vol. 4, no. 4, pp. 869–877, 2013.

E. Wilson, “Theoretical and operational thermal performance of a ‘ wet ’ crystalline silicon PV module under Jamaican conditions,” vol. 34, pp. 1655–1660, 2009.

M. J. Huang, P. C. Eames, and B. Norton, “Thermal regulation of building-integrated photovoltaics using phase change materials,” International Journal of Heat and Mass Transfer, vol. 47, no. 12–13, pp. 2715–2733, 2004.

T. Ma, H. Yang, Y. Zhang, L. Lu, and X. Wang, “Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook,” Renewable and Sustainable Energy Reviews, vol. 43, no. April, pp. 1273–1284, 2015.

H. Bahaidarah, A. Subhan, P. Gandhidasan, and S. Rehman,

“Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions,” Energy, vol. 59, pp. 445–453, 2013.

C. Sun, Y. Liu, C. Duan, Y. Zheng, H. Chang, and S. Shu, “A

mathematical model to investigate on the thermal performance of a flat plate solar air collector and its experimental verification,” Energy Conversion and Management, vol. 115, pp. 43–51, 2016.

S. Dubey, G. S. Sandhu, and G. N. Tiwari, “Analytical expression for electrical efficiency of PV / T hybrid air collector,” Applied Energy, vol. 86, no. 5, pp. 697–705, 2009.

L. Aelenei, R. Pereira, H. Gonçalves, and A. Athienitis, “Thermal performance of a hybrid BIPV-PCM : modeling , design and experimental investigation,” Elsevier B.V., 2014.

A. S. Joshi, I. Dincer, and B. V. Reddy, “Thermodynamic assessment of photovoltaic systems,” Solar Energy, vol. 83, no. 8, pp. 1139–1149, 2009.


Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##

##submission.license.cc.by-sa4.footer##

Creative Commons License

Prosiding Seminar Nasional Politeknik Negeri Lhokseumawe is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

© 2017 All rights reserved |Seminar nasional Politeknik Negeri Lhokseumawe p-ISSN:2598-3954.

.