Twist and chord optimization using the linearization method on the taper blade of a micro-horizontal axis wind turbineTwist and chord optimization using the linearization method on the taper blade of a micro-horizontal axis wind turbine
Abstract
The research aims to optimize the geometry of taper blade profiles for the Horizontal Axis Wind Turbine (HAWT) to improve aerodynamic performance and minimize fabrication complexity. The study used blade linearization as an optimization method for identifying a desirable twist (β) and chord (Cr). This approach enhances accuracy and boosts computational efficiency. It simplifies the optimization process by reducing complexity. In contrast, traditional nonlinear methods are slower and more resource-intensive due to complex aerodynamic interactions. The best β and Cr distributions were found by linearization with elements 1 and 10 of the blade length and positions 5%, 15%, 25%, 35%, 45%, 55%, 65%, 75%, 85, and 95% of the blade elements. The linearization results were used to determine the optimum performance of the HAWT design using simulation. The optimal blades for HAWT were fabricated and their performance evaluated under real wind conditions. The linearization of the 45% twist and chord of elements 1 and 10 provided the best blade shape. Optimized twist and chord yielded HAWT performance with the Cp of 45% to 47% at rotational speeds of 200–900 rpm and wind speeds of 2–10 m/s. Twist and chord optimization increased the Cp from 39.71% to 46.43% with a rotational speed of 550 rpm at a wind speed of 6 m/s, as well as the maximum mechanical power from 424.28 watts to 500.35 watts at a wind speed of 10 m/s. The result from real wind conditions showed that manufactured HWAT produced an average electrical power of 294.19 watts at a rotational speed of 590.66 rpm. These results demonstrate that the optimized design approach presents a close match and is still reasonable in comparison to practical conditions.
Keywords
Full Text:
PDFReferences
EBTKE, “Cadangan Batubara Masih 38,84 Miliar Ton, Teknologi Bersih Pengelolaannya Terus Didorong,” ebtke.esdm.go.id, 2021. https://www.esdm.go.id/id/media-center/arsip-berita/cadangan-batubara-masih-3884-miliar-ton-teknologi-bersih-pengelolaannya-terus-didorong (accessed Nov. 15, 2023).
EBTKE, “Potensi Energi Angin Indonesia 2020,” ebtke.esdm.go.id, 2021. https://p3tkebt.esdm.go.id/pilot-plan-project/energi_angin/potensi-energi-angin-indonesia-2020
H. Piggott, “Windpower workshop: building your own wind turbine,” Wind. Work. Build. your own Wind turbine, 1997.
A. Albanesi, V. Fachinotti, I. Peralta, B. Storti, and C. Gebhardt, “Application of the inverse finite element method to design wind turbine blades,” Compos. Struct., vol. 161, pp. 160–172, 2017, doi: 10.1016/j.compstruct.2016.11.039.
A. A. Nada and A. S. Al-Shahrani, “Shape Optimization of Low Speed Wind Turbine Blades using Flexible Multibody Approach,” Energy Procedia, vol. 134, pp. 577–587, 2017, doi: 10.1016/j.egypro.2017.09.567.
E. Musyarofah, “Rancang Bangun Sudu Inverse Taper Pada Small Wind Turbine Dengan Tipe Airfoil Sg6042,” 2020.
A. DWI SAPTO and H. PANDU RUMAKSO, “Uji Coba Performa Bentuk Airfoil Menggunakan Software Qblade Terhadap Turbin Angin Tipe Sumbu Horizontal,” J. Tek. Mesin, vol. 10, no. 1, p. 1, 2021, doi: 10.22441/jtm.v10i1.10212.
S. N. Wahyudi, D. H. Al-Janan, and D. D. Saputro, “Konfigurasi Bilah NACA 3612 Terhadap Performa Turbin Angin Sumbu Horizontal (TASH),” J. Rekayasa Mesin, vol. 11, no. 3, pp. 415–425, 2020, doi: 10.21776/ub.jrm.2020.011.03.14.
M. A. Ikaningsih and W. Rosihan, “Penggunaan Styrofoam sebagai Material Bilah Turbin Angin,” Rotasi, vol. 21, no. 1, p. 23, 2019, doi: 10.14710/rotasi.21.1.23-29.
M. A. Cahyono and L. Laksamana, “Pull and Bending Force Carbon Fiber Composite,” Vortex, vol. 1, no. 2, p. 87, 2021, doi: 10.28989/vortex.v1i2.899.
W. T. Nugroho, “Pengaruh Model Serat Pada Bahan Fiberglass Terhadap Kekuatan, Ketangguhan, Dan Kekerasan Material,” J. Ilm. Inov., vol. 15, no. 1, 2016, doi: 10.25047/jii.v15i1.58.
S. K. Lapeantu, A. Hapid, and Muthmainnah, “Sifat Mekanika Kayu Pinus (Pinus merkusii Jungh et de Vriese) Asal Desa Taende Mori Atas Morowali Utara Sulawesi Tengah,” J. War. Rimba, vol. 5, pp. 121–126, 2017.
A. Wijayanto, S. Dumarçay, C. Gérardin-Charbonnier, R. K. Sari, W. Syafii, and P. Gérardin, “Phenolic and lipophilic extractives in Pinus merkusii Jungh. et de Vries knots and stemwood,” Ind. Crops Prod., vol. 69, pp. 466–471, 2015, doi: 10.1016/j.indcrop.2015.02.061.
F. N. Rangkuti, M. Rokhmat, and I. N. Zahra, “Perancangan Bilah Taper Pada Turbin Angin Sumbu Horizontal,” eProceedings Eng., vol. 8, no. 5, pp. 5834–5842, 2021.
J. Chen and M. H. Kim, “Review of Recent Offshore Wind Turbine Research and Optimization Methodologies in Their Design,” J. Mar. Sci. Eng., vol. 10, no. 1, 2022, doi: 10.3390/jmse10010028.
M. S. Selig and V. L. Coverstone-Carroll, “Application of a genetic algorithm to wind turbine design,” J. Energy Resour. Technol. Trans. ASME, vol. 118, no. 1, pp. 22–28, 1996, doi: 10.1115/1.2792688.
O. Ceyhan, “Aerodynamic Design and Optimization of Horizontal Axis Wind Turbines by Using BEM Theory and Genetic Algorithm,” Aerosp. Eng., 2008.
X. Liu, Y. Chen, and Z. Ye, “Optimization model for rotor blades of horizontal axis wind turbines,” Front. Mech. Eng. China, vol. 2, no. 4, pp. 483–488, 2007, doi: 10.1007/s11465-007-0084-9.
A. Abbaskhah, H. Sedighi, P. Akbarzadeh, and A. Salavatipour, “Optimization of horizontal axis wind turbine performance with the dimpled blades by using CNN and MLP models,” Ocean Eng., vol. 276, 2023, doi: 10.1016/j.oceaneng.2023.114185.
A. Sedaghat, M. Mirhosseini, and M. Moghimi Zand, “Energy Equipment and Systems Aerodynamic design and economical evaluation of site specific horizontal axis wind turbine (HAWT),” Energyequipsys, vol. 2, pp. 43–55, 2014.
R. Özkan and M. S. Genç, “Aerodynamic design and optimization of a small-scale wind turbine blade using a novel artificial bee colony algorithm based on blade element momentum (ABC-BEM) theory,” Energy Convers. Manag., vol. 283, 2023, doi: 10.1016/j.enconman.2023.116937.
J. Xu et al., “A cost-effective CNN-BEM coupling framework for design optimization of horizontal axis tidal turbine blades,” Energy, vol. 282, 2023, doi: 10.1016/j.energy.2023.128707.
S. A. Kale and R. N. Varma, “Aerodynamic design of a horizontal axis micro wind turbine blade using NACA 4412 profile,” Int. J. Renew. Energy Res., vol. 4, no. 1, pp. 69–72, 2014.
V. Keshavarzzadeh, R. G. Ghanem, and D. A. Tortorelli, “Shape optimization under uncertainty for rotor blades of horizontal axis wind turbines,” Comput. Methods Appl. Mech. Eng., vol. 354, pp. 271–306, 2019, doi: 10.1016/j.cma.2019.05.015.
S. Rahgozar, A. Pourrajabian, S. A. A. Kazmi, and S. M. R. Kazmi, “Performance analysis of a small horizontal axis wind turbine under the use of linear/nonlinear distributions for the chord and twist angle,” Energy Sustain. Dev., vol. 58, pp. 42–49, 2020, doi: 10.1016/j.esd.2020.07.003.
A. M. Abdelsalam, W. A. El-Askary, M. A. Kotb, and I. M. Sakr, “Experimental study on small scale horizontal axis wind turbine of analytically-optimized blade with linearized chord twist angle profile,” Energy, vol. 216, 2021, doi: 10.1016/j.energy.2020.119304.
B. Augustiantyo, R. Setiawan, and O. Oleh, “Optimasi Desain Bilah Dengan Metode Linearisasi Chord Dan Twist Terhadap Performa Turbin Angin Sumbu Horizontal,” Media Mesin Maj. Tek. Mesin, vol. 22, no. 2, pp. 97–110, 2021, doi: 10.23917/mesin.v22i2.14712.
R. B. Marten, David; Saverin, Joseph; de Luna, “Theory Guide: Blade Element Momentum Method,” 2021. https://docs.qblade.org/src/theory/aerodynamics/bem/bem.html (accessed Dec. 12, 2023).
M. R. Islam, L. Bin Bashar, and N. S. Rafi, “Design and Simulation of A Small Wind Turbine Blade with Qblade and Validation with MATLAB,” 2019 4th Int. Conf. Electr. Inf. Commun. Technol. EICT 2019, 2019, doi: 10.1109/EICT48899.2019.9068762.
M. Yamin and Z. Alkahfi Raamadhan, “Neural Network Approach for Predicting Aerodynamic Performance of NACA Airfoil at Low Reynolds Number,” Desiminating Inf. Res. Mech. Eng. Polimesin, vol. 20, no. 2, p. 2022, 2022.
I. N. Zahra, “Dasar-Dasar Perancangan Bilah,” pp. 13–19, 2020.
R. Vallinayagam, S. Vedharaj, W. M. Yang, P. S. Lee, K. J. E. Chua, and S. K. Chou, “Combustion performance and emission characteristics study of pine oil in a diesel engine,” Energy, vol. 57, pp. 344–351, 2013, doi: 10.1016/j.energy.2013.05.061.
D. T. Kashid, A. K. Parkhe, S. M. Kale, S. S. Wangikar, C. C. Jadhav, and H. N. Paricharak, “NACA 4415 Aerofoil: Numerical Analysis for Performance in Drag and Lift,” Techno-societal 2022, pp. 461–474, 2024, doi: 10.1007/978-3-031-34644-6_48.
C. Pranesh, M. Sivapragasam, M. D. Deshpande, and H. K. Narahari, “Negative lift characteristics of NACA 0012 aerofoil at low Reynolds numbers,” Sadhana - Acad. Proc. Eng. Sci., vol. 44, no. 1, 2019, doi: 10.1007/s12046-018-1008-6.
P. R. Mehta and R. V. Kale, “Parameters Affecting Design of Wind Turbine Blade—A Review,” Lect. Notes Mech. Eng., pp. 315–324, 2022, doi: 10.1007/978-981-16-7909-4_28.
B. Xu, Z. Li, Z. Zhu, X. Cai, T. Wang, and Z. Zhao, “The Parametric Modeling and Two-Objective Optimal Design of a Downwind Blade,” Front. Energy Res., vol. 9, 2021, doi: 10.3389/fenrg.2021.708230.
Y. D. Herlambang et al., “Optimization of savonius turbine towards different inner blade positions to improve turbine performance,” J. Polimesin, vol. 21, no. 1, pp. 2023–2026, 2023.
H. Zhang, Y. Hu, and W. Wang, “Wind tunnel experimental study on the aerodynamic characteristics of straight-bladed vertical axis wind turbine,” Int. J. Sustain. Energy, vol. 43, no. 1, 2024, doi: 10.1080/14786451.2024.2305035.
O. C. Castillo, V. R. Andrade, J. J. R. Rivas, and R. O. González, “Comparison of Power Coefficients in Wind Turbines Considering the Tip Speed Ratio and Blade Pitch Angle,” Energies, vol. 16, no. 6, 2023, doi: 10.3390/en16062774.
A. A. Firoozi, F. Hejazi, and A. A. Firoozi, “Advancing Wind Energy Efficiency: A Systematic Review of Aerodynamic Optimization in Wind Turbine Blade Design,” Energies , vol. 17, no. 12, 2024, doi: 10.3390/en17122919.
W. Hao, A. Abdi, G. Wang, and F. Wu, “Study on the Pitch Angle Effect on the Power Coefficient and Blade Fatigue Load of a Vertical Axis Wind Turbine,” Energies, vol. 16, no. 21, 2023, doi: 10.3390/en16217279.
L. Li, I. Chopra, W. Zhu, and M. Yu, “Performance analysis and optimization of a vertical-axis wind turbine with a high tip-speed ratio,” Energies, vol. 14, no. 4, 2021, doi: 10.3390/en14040996.
A. Alkhabbaz, H. S. Yang, A. H. S. Weerakoon, and Y. H. Lee, “A novel linearization approach of chord and twist angle distribution for 10 kW horizontal axis wind turbine,” Renew. Energy, vol. 178, pp. 1398–1420, 2021, doi: 10.1016/j.renene.2021.06.077.
R. Syahputra, A. Jamal, S. Sudarisman, K. Purwanto, and I. Soesanti, “Performance Investigation of Standalone Wind Power System Equipped with Sinusoidal Pwm Power Inverter for Household Consumer in Rural Areas of Indonesia,” SSRN Electron. J., 2021, doi: 10.2139/ssrn.3940884.
I. Ifanda et al., “Optimizing Turbine Siting and Wind Farm Layout in Indonesia,” Int. J. Renew. Energy Res., vol. 13, no. 3, pp. 1351–1363, 2023, doi: 10.20508/ijrer.v13i3.14070.g8806.
D. G. Cendrawati, N. W. Hesty, B. Pranoto, Aminuddin, A. H. Kuncoro, and A. Fudholi, “Short-Term Wind Energy Resource Prediction Using Weather Research Forecasting Model for a Location in Indonesia,” Int. J. Technol., vol. 14, no. 3, pp. 584–595, 2023, doi: 10.14716/ijtech.v14i3.5803.
A. N. Robertson, K. Shaler, L. Sethuraman, and J. Jonkman, “Sensitivity analysis of the effect of wind characteristics and turbine properties on wind turbine loads,” Wind Energy Sci., vol. 4, no. 3, pp. 479–513, 2019, doi: 10.5194/wes-4-479-2019.
B. M. Mazetto and T. G. Ritto, “Uncertainty and Global Sensitivity Analysis of Wind Turbines Fatigue in Non-ideal Conditions,” J. Vib. Eng. Technol., vol. 10, no. 6, pp. 2391–2402, 2022, doi: 10.1007/s42417-022-00632-7.
J. C. Y. Lee et al., “The Power Curve Working Group’s assessment of wind turbine power performance prediction methods,” Wind Energy Sci., vol. 5, no. 1, pp. 199–223, 2020, doi: 10.5194/wes-5-199-2020.
DOI: http://dx.doi.org/10.30811/jpl.v22i5.5540
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .
Alamat Surat :
Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia