Mechanical Processing with Solid-State of Supercapacitor Materials: A Review of High Energy Milling and High Velocity Particle Methods

Mahruri Arif Wicaksono, Bambang Suharno, Widi Astuti, Yayat Iman Supriyatna, Slamet Sumardi

Abstract


Supercapacitors have emerged as a crucial energy storage technology, bridging the gap between traditional capacitors and batteries. The performance of supercapacitors is heavily dependent on the properties of the electrode materials used. Mechanical processing methods, particularly High Energy Milling (HEM) and High-Velocity Particle (HVP) methods have shown great promise in enhancing the physical and electrochemical properties of supercapacitor materials. This review explores the fundamental principles, mechanisms, and recent advancements in HEM and HVP techniques for the synthesis and modification of supercapacitor materials. High energy milling, including ballmill and attritor milling, facilitates particle size reduction, increased surface area, and the creation of nanostructures, leading to improved capacitance and energy density. High velocity particle methods, such as cold spraying and thermal spraying, enable the deposition of uniform and dense coatings, enhancing conductivity and stability. The review also discusses the impact of process parameters on material properties, the challenges faced in scaling up these techniques, and the potential future directions for research. By providing a comprehensive overview of these mechanical processing methods, this paper aims to highlight their significance and potential in advancing supercapacitor technology.

Keywords


Supercapacitor, mechanical processing, solid-state materials, High Energy Milling (HEM), High-Velocity Particle (HVP) methods.

Full Text:

PDF

References


Broseghini, M., Gelisio, L., D’Incau, M., Ricardo, C. A.,

Pugno, N. M., & Scardi, P. (2016). Modeling of the planetary

ball-milling process: The case study of ceramic powders.

Journal of the European Ceramic Society, 36(9), 2205-2212.

Chattopadhyay, P. P., Manna, I., Talapatra, S., & Pabi, S. K.

(2001). A mathematical analysis of milling mechanics in a

planetary ball mill. Materials Chemistry and Physics, 68(1-

, 85-94.

Baran, A., Knioła, M., Rogala, T., & Polanski, M. (2022).

New horizon in mechanochemistry-high-temperature, high-

Disseminating Information on the Research of Mechanical Engineering - Jurnal Polimesin Volume 22, No. 4, August 2024 430

pressure mechanical synthesis in a planetary ball mill-with

magnesium hydride synthesis as an example. International

Journal of Hydrogen Energy, 47(82), 35003-35016.

Vigneshkumar, M., Murugan, S. S., Varthanan, P. A.,

Gokilakrishnan, G., Gobikrishnan, N., & Pagutharivu, A. P.

(2022, October). High velocity oxygen fuel coating for

enhancing tribological behaviour of engineering metals. In

AIP Conference Proceedings (Vol. 2527, No. 1). AIP

Publishing.

Bakan, E., Mauer, G., Sohn, Y. J., Koch, D., & Vaßen, R.

(2017). Application of high-velocity oxygen-fuel (HVOF)

spraying to the fabrication of Yb-silicate environmental

barrier coatings. Coatings, 7(4), 55.

Adaan-Nyiak, M. A., & Tiamiyu, A. A. (2023). Recent

advances on bonding mechanism in cold spray process: A

review of single-particle impact methods. Journal of

Materials Research, 38(1), 69-95.

Fernandez-Diaz, L., Castillo, J., Sasieta-Barrutia, E., Arnaiz,

M., Cabello, M., Judez, X., & Villaverde, A. (2023). Mixing

methods for solid state electrodes: techniques, fundamentals,

recent advances, and perspectives. Chemical Engineering

Journal, 464, 142469.

Saaid, F. I., Kasim, M. F., Winie, T., Elong, K. A., Azahidi,

A., Basri, N. D.,& Rusop, M. (2023). Ni-rich lithium nickel

manganese cobalt oxide cathode materials: A review on the

synthesis methods and their electrochemical performances.

Heliyon.

Ma, Q., Xu, Q., Tsai, C. L., Tietz, F., & Guillon, O. (2016).

A Novel Sol–Gel Method for Large‐Scale Production of

Nanopowders: Preparation of Li1.5Al0.5Ti1.5 (PO4)3 as an

Example. Journal of the American Ceramic Society, 99(2),

-414.

Ciriminna, R., & Pagliaro, M. (2022). Open challenges in

sol–gel science and technology. Journal of Sol-Gel Science

and Technology, 101(1), 29-36.

Widiyandari, H., Sukmawati, A. N., Sutanto, H., Yudha, C.,

& Purwanto, A. (2019, February). Synthesis of

LiNi0.8Mn0.1Co0.1O2 cathode material by hydrothermal

method for high energy density lithium ion Power Storage.

In Journal of Physics: Conference Series (Vol. 1153, No. 1,

p. 012074). IOP Publishing.

Essehli, R., Parejiya, A., Muralidharan, N., Jafta, C. J.,

Amin, R., Dixit, M. B.,& Belharouak, I. (2022).

Hydrothermal synthesis of Co-free NMA cathodes for high

performance Li-ion batteries. Journal of Power Sources, 545,

Jiang, M., Zhang, Q., Wu, X., Chen, Z., Danilov, D. L.,

Eichel, R. A., & Notten, P. H. (2020). Synthesis of Ni-rich

layered-oxide nanomaterials with enhanced Li-ion diffusion

pathways as high-rate cathodes for Li-ion batteries. ACS

applied energy materials, 3(7), 6583-6590.

Costa, R. S., Guedes, A., Pereira, A. M., & Pereira, C.

(2020). Fabrication of all-solid-state textile supercapacitors

based on industrial-grade multi-walled carbon nanotubes for

enhanced energy storage. Journal of Materials Science,

(23), 10121-10141.

Akin, M., & Zhou, X. (2022). Recent advances in solid‐state

supercapacitors: from emerging materials to advanced

applications. International journal of energy research, 46(8),

-10452.

Huang, C., Zhang, J., Young, N. P., Snaith, H. J., & Grant, P.

S. (2016). Solid-state supercapacitors with rationally

designed heterogeneous electrodes fabricated by large area

spray processing for wearable energy storage applications.

Scientific reports, 6(1), 25684.

Wei, L. C., Ehrlich, L. E., Powell-Palm, M. J., Montgomery,

C., Beuth, J., & Malen, J. A. (2018). Thermal conductivity of

metal powders for powder bed additive manufacturing.

Additive Manufacturing, 21, 201-208.

Aksöz, S., Öztürk, E., & Maraşlı, N. (2013). The

measurement of thermal conductivity variation with

temperature for solid materials. Measurement, 46(1), 161-

Zhao, D., Qian, X., Gu, X., Jajja, S. A., & Yang, R. (2016).

Measurement techniques for thermal conductivity and

interfacial thermal conductance of bulk and thin film

materials. Journal of Electronic Packaging, 138(4), 040802.

Schlem, R., Burmeister, C. F., Michalowski, P., Ohno, S.,

Dewald, G. F., Kwade, A., & Zeier, W. G. (2021). Energy

storage materials for solid‐state batteries: design by

mechanochemistry. Advanced Energy Materials, 11(30),

X. Miao, H. Ni, H. Zhang, C. Wang, J. Fang, G. Yang,

Li2ZrO3-coated 0.4Li2MnO 3⋅0.6LiNi1/3Co1/3Mn1/3O2 for

high performance cathode material in lithium-ion Power

Storage, J. Power Sources 264 (2014) 147–154.

R.M. Salgado, F. Danzi, J.E. Oliveira, A. El-Azab, P.P.

Camanho, M.H. Braga, The latest trends in electric vehicles

batteries, Molecules 26 (2021) 3188.

Helmers, L., Froböse, L., Friedrich, K., Steffens, M., Kern,

D., Michalowski, P., & Kwade, A. (2021). Sustainable

solvent‐free production and resulting performance of

polymer electrolyte‐based all‐solid‐state Power Storage

electrodes. Energy Technology, 9(3), 2000923.

Lobato, B. (2021). Carbon Materials as Electrodes of

Electrochemical Double-Layer Capacitors: Textural and

Electrochemical Characterization. In Carbon Related

Materials: Commemoration for Nobel Laureate Professor

Suzuki Special Symposium at IUMRS-ICAM2017 (pp. 149-

. Springer Singapore.

Iro, Z. S., Subramani, C., & Dash, S. S. (2016). A brief

review on electrode materials for supercapacitor.

International Journal of Electrochemical Science, 11(12),

-10643.

Bhujun, B., Tan, M. T., & Shanmugam, A. S. (2017). Study

of mixed ternary transition metal ferrites as potential

electrodes for supercapacitor applications. Results in

Physics, 7, 345-353.

Rao, S. S., Kanaka Durga, I., Naresh, B., Jin-Soo, B.,

Krishna, T. N. V., In-Ho, C., & Kim, H. J. (2018). One-pot

hydrothermal synthesis of novel Cu-MnS with PVP cabbagelike nanostructures for high-performance supercapacitors.

Energies, 11(6), 1590

Thirumal, V., Pandurangan, A., Jayavel, R., Krishnamoorthi,

S. R., & Ilangovan, R. (2016). Synthesis of nitrogen doped

coiled double walled carbon nanotubes by chemical vapor

deposition method for supercapacitor applications. Current

Applied Physics, 16(8), 816-825

Fei, H., Saha, N., Kazantseva, N., Moucka, R., Cheng, Q., &

Saha, P. (2017). A highly flexible supercapacitor based on

MnO2/RGO nanosheets and bacterial cellulose-filled gel

electrolyte. Materials, 10(11), 1251.

Han, Y., Lei, Y., Ni, J., Zhang, Y., Geng, Z., Ming, P., &

Xiao, Q. (2022). Single‐crystalline cathodes for advanced Li‐

ion batteries: progress and challenges. Small, 18(43),

Wijareni, A. S., Widiyandari, H., Purwanto, A., Arif, A. F.,

& Mubarok, M. Z. (2022). Morphology and Particle Size of a

Synthesized NMC 811 Cathode precursor with Mixed

Hydroxide Precipitate and nickel sulfate as nickel sources

and comparison of their electrochemical performances in an

NMC 811 lithium-ion Power Storage. Energies, 15(16), 5794

Xiang, Y., Huang, M., Jiang, Y., Liu, S., Li, J., Wu, J., &

Xiong, L. (2021). Ionic liquid assisted hydrothermal

synthesis of 0.5Li2MnO3·0.5 LiNi0.5Mn0.5O2 for lithium ion

batteries. Journal of Alloys and Compounds, 864, 158177.

Disseminating Information on the Research of Mechanical Engineering - Jurnal Polimesin Volume 22, No. 4, August 2024 431

Jayachandran, M., Therese, H. A., & Vijayakumar, T.

(2023). Tailored solution combustion method for enhancing

high voltage electrochemical performance Li1.2Ni0.1Mn0.

Co0.1O2 as cathode material for lithium-ion batteries.

Surfaces and Interfaces, 42, 103339

Dhere, S. (2018). Electrode materials for supercapacitors

synthesized by sol–gel process. Current science, 115(3), 436-

Priyadharsini, C. I., Marimuthu, G., Pazhanivel, T.,

Anbarasan, P. M., Aroulmoji, V., Siva, V., & Mohana, L.

(2020). Sol-Gel synthesis of Co 3 O 4 nanoparticles as an

electrode material for supercapacitor applications. Journal of

Sol-Gel Science and Technology, 96, 416-422

Sun, M., Fang, Q., Li, Z., Cai, C., Li, H., Cao, B., & Fu, Y.

(2021). Co-precipitation synthesis of CuCo2O4 nanoparticles

for supercapacitor electrodes with large specific capacity and

high rate capability. Electrochimica Acta, 397, 139306

Yadav, S., & Sharma, A. (2021). Importance and challenges

of hydrothermal technique for synthesis of transition metal

oxides and composites as supercapacitor electrode materials.

Journal of Energy Storage, 44, 103295.

Sisakyan, N., Chilingaryan, G., Manukyan, A., & Mukasyan,

A. S. (2023). Combustion Synthesis of Materials for

Application in Supercapacitors: A Review. Nanomaterials,

(23), 3030

Burmeister, C. F., & Kwade, A. (2013). Process engineering

with planetary ball mills. Chemical Society Reviews, 42(18),

-7667.

Gusev, V. G., Sobol’Kov, A. V., Aborkin, A. V., & Alymov,

M. I. (2019). Simulation of the Energy–Force Parameters of

Planetary Ball Mill Processing and Estimation of Their

Influence on the Particle Size in an AMg2 Alloy/Graphite

Composite Powder. Russian Metallurgy (Metally), 2019, 24-

Loh, Z. H., Samanta, A. K., & Heng, P. W. S. (2015).

Overview of milling techniques for improving the solubility

of poorly water-soluble drugs. Asian journal of

pharmaceutical sciences, 10(4), 255-274

Assadi, H., Kreye, H., Gärtner, F., & Klassen, T. J. A. M.

(2016). Cold spraying–A materials perspective. Acta

Materialia, 116, 382-407.

Moridi, A., Hassani-Gangaraj, S. M., Guagliano, M., & Dao,

M. (2014). Cold spray coating: review of material systems

and future perspectives. Surface Engineering, 30(6), 369-395

Wang, X., Feng, F., Klecka, M. A., Mordasky, M. D.,

Garofano, J. K., El-Wardany, T.,& Champagne, V. K.

(2015). Characterization and modeling of the bonding

process in cold spray additive manufacturing. Additive

Manufacturing, 8, 149-162

Champagne Jr, V. K., Ozdemir, O. C., & Nardi, A. (Eds.).

(2021). Practical cold spray. Cham, Switzerland: Springer

International Publishing

Wang, X., Feng, F., Klecka, M. A., Mordasky, M. D.,

Garofano, J. K., El-Wardany, T.,& Champagne, V. K.

(2015). Characterization and modeling of the bonding

process in cold spray additive manufacturing. Additive

Manufacturing, 8, 149-162

Dykhuizen, R. C., & Smith, M. F. (1998). Gas dynamic

principles of cold spray. Journal of Thermal spray

technology, 7, 205-212.

Assadi, H., Gärtner, F., Stoltenhoff, T., & Kreye, H. (2003).

Bonding mechanism in cold gas spraying. Acta materialia,

(15), 4379-4394.

Yaseen, M., Khattak, M. A. K., Humayun, M., Usman, M.,

Shah, S. S., Bibi, S.,& Ullah, H. (2021). A review of

supercapacitors: materials design, modification, and

applications. Energies, 14(22), 7779.

Li, W., Erickson, E. M., & Manthiram, A. (2020). Highnickel layered oxide cathodes for lithium-based automotive

batteries. Nature Energy, 5(1), 26-34.

Wang, X., Yasukawa, E., & Kasuya, S. (2001).

Nonflammable trimethyl phosphate solvent-containing

electrolytes for lithium-ion batteries: I. Fundamental

properties. Journal of The Electrochemical Society, 148(10),

A1058.

Stein IV, M., Chen, C. F., Mullings, M., Jaime, D., Zaleski,

A., Mukherjee, P. P., & Rhodes, C. P. (2016). Probing the

effect of high energy ball milling on the structure and

properties of LiNi1/3Mn1/3Co1/3O2 cathodes for Li-ion

batteries. Journal of electrochemical energy conversion and

storage, 13(3), 031001.

Li, Q., Dang, R., Chen, M., Lee, Y., Hu, Z., & Xiao, X.

(2018). Synthesis method for long cycle life lithium-ion

cathode material: Nickel-rich core-shell

LiNi0.8Co0.1Mn0.1O2.ACS applied materials & interfaces,

(21), 17850-17860.

Widiyandari, H., Latifah, R. A., Jumari, A., Yudha, C. S., &

Nisa, S. S. Sintesis Material Katoda LiNi0,8Mn0,1Co0,1O2

(NMC811) dengan Metode Solid State Menggunakan Nikel

Hasil Perolehan Kembali dari Spent Nickel Catalyst.

ALCHEMY Jurnal Penelitian Kimia, 18(2), 214-220.

Pan, T., Alvarado, J., Zhu, J., Yue, Y., Xin, H. L., Nordlund,

D.,& Doeff, M. M. (2019). Structural degradation of layered

cathode materials in lithium-ion batteries induced by ball

milling. Journal of the electrochemical society, 166(10),

A1964.

Zybert, M., Ronduda, H., Dąbrowska, K., Ostrowski, A.,

Sobczak, K., Moszyński, D., ... & Wieczorek, W. (2022).

Suppressing Ni/Li disordering in LiNi0.6Mn0.2Co0.2O2

cathode material for Li-ion batteries by rare earth element

doping. Energy Reports, 8, 3995-4005.

Ding, Y., Zhang, P., Jiang, Y., & Gao, D. (2007). Effect of

rare earth elements doping on structure and electrochemical

properties of LiNi1/3Co1/3Mn1/3O2 for lithium-ion battery.

Solid State Ionics, 178(13-14), 967-971.

Dong, M. X., Li, X. Q., Wang, Z. X., Li, X. H., Guo, H. J., &

Huang, Z. J. (2017). Enhanced cycling stability of La

modified LiNi0.8xCo0.1Mn0.1LaxO2 for Li-ion battery.

Transactions of Nonferrous Metals Society of China, 27(5),

-1142.

Jia, X., Yan, M., Zhou, Z., Chen, X., Yao, C., Chen, D., &

Chen, Y. (2017). Nd-doped LiNi0.5Co0.2Mn0.3O2 as a cathode

material for better rate capability in high voltage cycling of

Li-ion batteries. Electrochimica Acta, 254, 50-58.

Zeng, Y., Qiu, K., Yang, Z., Zhou, F., Xia, L., & Bu, Y.

(2016). Influence of europium doping on the electrochemical

performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for

lithium-ion batteries. Ceramics International, 42(8), 10433-

Shi, Y., Kim, K., Xing, Y., Millonig, A., Kim, B., Wang, L.,

& Wen, J. (2020). Facile and scalable dry surface doping

technique to enhance the electrochemical performance of

LiNi0.64Mn0.2Co0.16O2 cathode materials. Journal of Materials

Chemistry A, 8(38), 19866-19872.




DOI: http://dx.doi.org/10.30811/jpl.v22i4.5296

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .

 

Alamat Surat :

Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia