Mechanical Processing with Solid-State of Supercapacitor Materials: A Review of High Energy Milling and High Velocity Particle Methods
Abstract
Keywords
Full Text:
PDFReferences
Broseghini, M., Gelisio, L., D’Incau, M., Ricardo, C. A.,
Pugno, N. M., & Scardi, P. (2016). Modeling of the planetary
ball-milling process: The case study of ceramic powders.
Journal of the European Ceramic Society, 36(9), 2205-2212.
Chattopadhyay, P. P., Manna, I., Talapatra, S., & Pabi, S. K.
(2001). A mathematical analysis of milling mechanics in a
planetary ball mill. Materials Chemistry and Physics, 68(1-
, 85-94.
Baran, A., Knioła, M., Rogala, T., & Polanski, M. (2022).
New horizon in mechanochemistry-high-temperature, high-
Disseminating Information on the Research of Mechanical Engineering - Jurnal Polimesin Volume 22, No. 4, August 2024 430
pressure mechanical synthesis in a planetary ball mill-with
magnesium hydride synthesis as an example. International
Journal of Hydrogen Energy, 47(82), 35003-35016.
Vigneshkumar, M., Murugan, S. S., Varthanan, P. A.,
Gokilakrishnan, G., Gobikrishnan, N., & Pagutharivu, A. P.
(2022, October). High velocity oxygen fuel coating for
enhancing tribological behaviour of engineering metals. In
AIP Conference Proceedings (Vol. 2527, No. 1). AIP
Publishing.
Bakan, E., Mauer, G., Sohn, Y. J., Koch, D., & Vaßen, R.
(2017). Application of high-velocity oxygen-fuel (HVOF)
spraying to the fabrication of Yb-silicate environmental
barrier coatings. Coatings, 7(4), 55.
Adaan-Nyiak, M. A., & Tiamiyu, A. A. (2023). Recent
advances on bonding mechanism in cold spray process: A
review of single-particle impact methods. Journal of
Materials Research, 38(1), 69-95.
Fernandez-Diaz, L., Castillo, J., Sasieta-Barrutia, E., Arnaiz,
M., Cabello, M., Judez, X., & Villaverde, A. (2023). Mixing
methods for solid state electrodes: techniques, fundamentals,
recent advances, and perspectives. Chemical Engineering
Journal, 464, 142469.
Saaid, F. I., Kasim, M. F., Winie, T., Elong, K. A., Azahidi,
A., Basri, N. D.,& Rusop, M. (2023). Ni-rich lithium nickel
manganese cobalt oxide cathode materials: A review on the
synthesis methods and their electrochemical performances.
Heliyon.
Ma, Q., Xu, Q., Tsai, C. L., Tietz, F., & Guillon, O. (2016).
A Novel Sol–Gel Method for Large‐Scale Production of
Nanopowders: Preparation of Li1.5Al0.5Ti1.5 (PO4)3 as an
Example. Journal of the American Ceramic Society, 99(2),
-414.
Ciriminna, R., & Pagliaro, M. (2022). Open challenges in
sol–gel science and technology. Journal of Sol-Gel Science
and Technology, 101(1), 29-36.
Widiyandari, H., Sukmawati, A. N., Sutanto, H., Yudha, C.,
& Purwanto, A. (2019, February). Synthesis of
LiNi0.8Mn0.1Co0.1O2 cathode material by hydrothermal
method for high energy density lithium ion Power Storage.
In Journal of Physics: Conference Series (Vol. 1153, No. 1,
p. 012074). IOP Publishing.
Essehli, R., Parejiya, A., Muralidharan, N., Jafta, C. J.,
Amin, R., Dixit, M. B.,& Belharouak, I. (2022).
Hydrothermal synthesis of Co-free NMA cathodes for high
performance Li-ion batteries. Journal of Power Sources, 545,
Jiang, M., Zhang, Q., Wu, X., Chen, Z., Danilov, D. L.,
Eichel, R. A., & Notten, P. H. (2020). Synthesis of Ni-rich
layered-oxide nanomaterials with enhanced Li-ion diffusion
pathways as high-rate cathodes for Li-ion batteries. ACS
applied energy materials, 3(7), 6583-6590.
Costa, R. S., Guedes, A., Pereira, A. M., & Pereira, C.
(2020). Fabrication of all-solid-state textile supercapacitors
based on industrial-grade multi-walled carbon nanotubes for
enhanced energy storage. Journal of Materials Science,
(23), 10121-10141.
Akin, M., & Zhou, X. (2022). Recent advances in solid‐state
supercapacitors: from emerging materials to advanced
applications. International journal of energy research, 46(8),
-10452.
Huang, C., Zhang, J., Young, N. P., Snaith, H. J., & Grant, P.
S. (2016). Solid-state supercapacitors with rationally
designed heterogeneous electrodes fabricated by large area
spray processing for wearable energy storage applications.
Scientific reports, 6(1), 25684.
Wei, L. C., Ehrlich, L. E., Powell-Palm, M. J., Montgomery,
C., Beuth, J., & Malen, J. A. (2018). Thermal conductivity of
metal powders for powder bed additive manufacturing.
Additive Manufacturing, 21, 201-208.
Aksöz, S., Öztürk, E., & Maraşlı, N. (2013). The
measurement of thermal conductivity variation with
temperature for solid materials. Measurement, 46(1), 161-
Zhao, D., Qian, X., Gu, X., Jajja, S. A., & Yang, R. (2016).
Measurement techniques for thermal conductivity and
interfacial thermal conductance of bulk and thin film
materials. Journal of Electronic Packaging, 138(4), 040802.
Schlem, R., Burmeister, C. F., Michalowski, P., Ohno, S.,
Dewald, G. F., Kwade, A., & Zeier, W. G. (2021). Energy
storage materials for solid‐state batteries: design by
mechanochemistry. Advanced Energy Materials, 11(30),
X. Miao, H. Ni, H. Zhang, C. Wang, J. Fang, G. Yang,
Li2ZrO3-coated 0.4Li2MnO 3⋅0.6LiNi1/3Co1/3Mn1/3O2 for
high performance cathode material in lithium-ion Power
Storage, J. Power Sources 264 (2014) 147–154.
R.M. Salgado, F. Danzi, J.E. Oliveira, A. El-Azab, P.P.
Camanho, M.H. Braga, The latest trends in electric vehicles
batteries, Molecules 26 (2021) 3188.
Helmers, L., Froböse, L., Friedrich, K., Steffens, M., Kern,
D., Michalowski, P., & Kwade, A. (2021). Sustainable
solvent‐free production and resulting performance of
polymer electrolyte‐based all‐solid‐state Power Storage
electrodes. Energy Technology, 9(3), 2000923.
Lobato, B. (2021). Carbon Materials as Electrodes of
Electrochemical Double-Layer Capacitors: Textural and
Electrochemical Characterization. In Carbon Related
Materials: Commemoration for Nobel Laureate Professor
Suzuki Special Symposium at IUMRS-ICAM2017 (pp. 149-
. Springer Singapore.
Iro, Z. S., Subramani, C., & Dash, S. S. (2016). A brief
review on electrode materials for supercapacitor.
International Journal of Electrochemical Science, 11(12),
-10643.
Bhujun, B., Tan, M. T., & Shanmugam, A. S. (2017). Study
of mixed ternary transition metal ferrites as potential
electrodes for supercapacitor applications. Results in
Physics, 7, 345-353.
Rao, S. S., Kanaka Durga, I., Naresh, B., Jin-Soo, B.,
Krishna, T. N. V., In-Ho, C., & Kim, H. J. (2018). One-pot
hydrothermal synthesis of novel Cu-MnS with PVP cabbagelike nanostructures for high-performance supercapacitors.
Energies, 11(6), 1590
Thirumal, V., Pandurangan, A., Jayavel, R., Krishnamoorthi,
S. R., & Ilangovan, R. (2016). Synthesis of nitrogen doped
coiled double walled carbon nanotubes by chemical vapor
deposition method for supercapacitor applications. Current
Applied Physics, 16(8), 816-825
Fei, H., Saha, N., Kazantseva, N., Moucka, R., Cheng, Q., &
Saha, P. (2017). A highly flexible supercapacitor based on
MnO2/RGO nanosheets and bacterial cellulose-filled gel
electrolyte. Materials, 10(11), 1251.
Han, Y., Lei, Y., Ni, J., Zhang, Y., Geng, Z., Ming, P., &
Xiao, Q. (2022). Single‐crystalline cathodes for advanced Li‐
ion batteries: progress and challenges. Small, 18(43),
Wijareni, A. S., Widiyandari, H., Purwanto, A., Arif, A. F.,
& Mubarok, M. Z. (2022). Morphology and Particle Size of a
Synthesized NMC 811 Cathode precursor with Mixed
Hydroxide Precipitate and nickel sulfate as nickel sources
and comparison of their electrochemical performances in an
NMC 811 lithium-ion Power Storage. Energies, 15(16), 5794
Xiang, Y., Huang, M., Jiang, Y., Liu, S., Li, J., Wu, J., &
Xiong, L. (2021). Ionic liquid assisted hydrothermal
synthesis of 0.5Li2MnO3·0.5 LiNi0.5Mn0.5O2 for lithium ion
batteries. Journal of Alloys and Compounds, 864, 158177.
Disseminating Information on the Research of Mechanical Engineering - Jurnal Polimesin Volume 22, No. 4, August 2024 431
Jayachandran, M., Therese, H. A., & Vijayakumar, T.
(2023). Tailored solution combustion method for enhancing
high voltage electrochemical performance Li1.2Ni0.1Mn0.
Co0.1O2 as cathode material for lithium-ion batteries.
Surfaces and Interfaces, 42, 103339
Dhere, S. (2018). Electrode materials for supercapacitors
synthesized by sol–gel process. Current science, 115(3), 436-
Priyadharsini, C. I., Marimuthu, G., Pazhanivel, T.,
Anbarasan, P. M., Aroulmoji, V., Siva, V., & Mohana, L.
(2020). Sol-Gel synthesis of Co 3 O 4 nanoparticles as an
electrode material for supercapacitor applications. Journal of
Sol-Gel Science and Technology, 96, 416-422
Sun, M., Fang, Q., Li, Z., Cai, C., Li, H., Cao, B., & Fu, Y.
(2021). Co-precipitation synthesis of CuCo2O4 nanoparticles
for supercapacitor electrodes with large specific capacity and
high rate capability. Electrochimica Acta, 397, 139306
Yadav, S., & Sharma, A. (2021). Importance and challenges
of hydrothermal technique for synthesis of transition metal
oxides and composites as supercapacitor electrode materials.
Journal of Energy Storage, 44, 103295.
Sisakyan, N., Chilingaryan, G., Manukyan, A., & Mukasyan,
A. S. (2023). Combustion Synthesis of Materials for
Application in Supercapacitors: A Review. Nanomaterials,
(23), 3030
Burmeister, C. F., & Kwade, A. (2013). Process engineering
with planetary ball mills. Chemical Society Reviews, 42(18),
-7667.
Gusev, V. G., Sobol’Kov, A. V., Aborkin, A. V., & Alymov,
M. I. (2019). Simulation of the Energy–Force Parameters of
Planetary Ball Mill Processing and Estimation of Their
Influence on the Particle Size in an AMg2 Alloy/Graphite
Composite Powder. Russian Metallurgy (Metally), 2019, 24-
Loh, Z. H., Samanta, A. K., & Heng, P. W. S. (2015).
Overview of milling techniques for improving the solubility
of poorly water-soluble drugs. Asian journal of
pharmaceutical sciences, 10(4), 255-274
Assadi, H., Kreye, H., Gärtner, F., & Klassen, T. J. A. M.
(2016). Cold spraying–A materials perspective. Acta
Materialia, 116, 382-407.
Moridi, A., Hassani-Gangaraj, S. M., Guagliano, M., & Dao,
M. (2014). Cold spray coating: review of material systems
and future perspectives. Surface Engineering, 30(6), 369-395
Wang, X., Feng, F., Klecka, M. A., Mordasky, M. D.,
Garofano, J. K., El-Wardany, T.,& Champagne, V. K.
(2015). Characterization and modeling of the bonding
process in cold spray additive manufacturing. Additive
Manufacturing, 8, 149-162
Champagne Jr, V. K., Ozdemir, O. C., & Nardi, A. (Eds.).
(2021). Practical cold spray. Cham, Switzerland: Springer
International Publishing
Wang, X., Feng, F., Klecka, M. A., Mordasky, M. D.,
Garofano, J. K., El-Wardany, T.,& Champagne, V. K.
(2015). Characterization and modeling of the bonding
process in cold spray additive manufacturing. Additive
Manufacturing, 8, 149-162
Dykhuizen, R. C., & Smith, M. F. (1998). Gas dynamic
principles of cold spray. Journal of Thermal spray
technology, 7, 205-212.
Assadi, H., Gärtner, F., Stoltenhoff, T., & Kreye, H. (2003).
Bonding mechanism in cold gas spraying. Acta materialia,
(15), 4379-4394.
Yaseen, M., Khattak, M. A. K., Humayun, M., Usman, M.,
Shah, S. S., Bibi, S.,& Ullah, H. (2021). A review of
supercapacitors: materials design, modification, and
applications. Energies, 14(22), 7779.
Li, W., Erickson, E. M., & Manthiram, A. (2020). Highnickel layered oxide cathodes for lithium-based automotive
batteries. Nature Energy, 5(1), 26-34.
Wang, X., Yasukawa, E., & Kasuya, S. (2001).
Nonflammable trimethyl phosphate solvent-containing
electrolytes for lithium-ion batteries: I. Fundamental
properties. Journal of The Electrochemical Society, 148(10),
A1058.
Stein IV, M., Chen, C. F., Mullings, M., Jaime, D., Zaleski,
A., Mukherjee, P. P., & Rhodes, C. P. (2016). Probing the
effect of high energy ball milling on the structure and
properties of LiNi1/3Mn1/3Co1/3O2 cathodes for Li-ion
batteries. Journal of electrochemical energy conversion and
storage, 13(3), 031001.
Li, Q., Dang, R., Chen, M., Lee, Y., Hu, Z., & Xiao, X.
(2018). Synthesis method for long cycle life lithium-ion
cathode material: Nickel-rich core-shell
LiNi0.8Co0.1Mn0.1O2.ACS applied materials & interfaces,
(21), 17850-17860.
Widiyandari, H., Latifah, R. A., Jumari, A., Yudha, C. S., &
Nisa, S. S. Sintesis Material Katoda LiNi0,8Mn0,1Co0,1O2
(NMC811) dengan Metode Solid State Menggunakan Nikel
Hasil Perolehan Kembali dari Spent Nickel Catalyst.
ALCHEMY Jurnal Penelitian Kimia, 18(2), 214-220.
Pan, T., Alvarado, J., Zhu, J., Yue, Y., Xin, H. L., Nordlund,
D.,& Doeff, M. M. (2019). Structural degradation of layered
cathode materials in lithium-ion batteries induced by ball
milling. Journal of the electrochemical society, 166(10),
A1964.
Zybert, M., Ronduda, H., Dąbrowska, K., Ostrowski, A.,
Sobczak, K., Moszyński, D., ... & Wieczorek, W. (2022).
Suppressing Ni/Li disordering in LiNi0.6Mn0.2Co0.2O2
cathode material for Li-ion batteries by rare earth element
doping. Energy Reports, 8, 3995-4005.
Ding, Y., Zhang, P., Jiang, Y., & Gao, D. (2007). Effect of
rare earth elements doping on structure and electrochemical
properties of LiNi1/3Co1/3Mn1/3O2 for lithium-ion battery.
Solid State Ionics, 178(13-14), 967-971.
Dong, M. X., Li, X. Q., Wang, Z. X., Li, X. H., Guo, H. J., &
Huang, Z. J. (2017). Enhanced cycling stability of La
modified LiNi0.8xCo0.1Mn0.1LaxO2 for Li-ion battery.
Transactions of Nonferrous Metals Society of China, 27(5),
-1142.
Jia, X., Yan, M., Zhou, Z., Chen, X., Yao, C., Chen, D., &
Chen, Y. (2017). Nd-doped LiNi0.5Co0.2Mn0.3O2 as a cathode
material for better rate capability in high voltage cycling of
Li-ion batteries. Electrochimica Acta, 254, 50-58.
Zeng, Y., Qiu, K., Yang, Z., Zhou, F., Xia, L., & Bu, Y.
(2016). Influence of europium doping on the electrochemical
performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for
lithium-ion batteries. Ceramics International, 42(8), 10433-
Shi, Y., Kim, K., Xing, Y., Millonig, A., Kim, B., Wang, L.,
& Wen, J. (2020). Facile and scalable dry surface doping
technique to enhance the electrochemical performance of
LiNi0.64Mn0.2Co0.16O2 cathode materials. Journal of Materials
Chemistry A, 8(38), 19866-19872.
DOI: http://dx.doi.org/10.30811/jpl.v22i4.5296
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .
Alamat Surat :
Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia