The Influence of Al-Ti-B on the microstructure of unidirectionally solidified Al-10wt.%Cu-10wt.%Si

Dedy Masnur, Viktor Malau, Suyitno suyitno

Abstract


Many works have reported the role of grain refiners in aluminumsilicon alloy casting in direct chill casting. However, only a few are under the unidirectional solidification condition. Direct chill casting favors equiaxed structures, while unidirectional solidification favors columnar structures. This work investigated the influence of Al-Ti-B on the microstructure of unidirectionally solidified Al-10wt.%Cu-10wt.%Si. The samples were directionally solidified using the Bridgman apparatus. It was cooled at the bottom to a temperature of 650℃, and the temperatures were recorded during the cooling. A representation of the cooling curve was selected, and the solidification parameters were calculated. Metallographic procedures were applied to observe the microstructure across the sample length. The results show that the 0.03wt.%Ti effectively promotes nucleation in many sites. It leads to the formation of equiaxed structures and prevents fine columnar structures from further growth. Due to the magnitude of the cooling rate, the 0.03wt.%Ti exhibits fine columnar, fine equiaxed, coarse equiaxed, and dendrite equiaxed structures at the separated distance from the contact area. This formation is in line with the one produced by the mechanism in direct chill casting. Understanding the grain refiner effect is crucial for optimizing manufacturing processes and achieving desired material properties. The Al-Ti-B addition is not recommended in the propeller manufacturing industry.

Keywords


Al-Cu-Si, columnar, grain refiner, unidirectional solidification.

Full Text:

PDF

References


N. K. Dien, T. T. Tho, N. V. Thanh, N. V. A. Duy, A.

Jannifar, and N. H. Tho, “Application of topology

optimization technique in sand casting process of a complex

product based on FDM 3D printing technology,” vol. 19,

A. Akhyar, “Numerical-hydrodynamic analysis, vickers

hardness, and tensile test of cast-brass alloy for boat

propellers,” Jurnal Polimesin, vol. 21, no. 2, Apr. 2023, doi:

30811/jpl.v21i2.3743.

J. G. Kaufman and E. L. Roy, Aluminum Alloy Castings:

Properties , Processes , and Applications. 2004.

S. Khan, A. Ourdjini, Q. S. Named, M. A. Alam Najafabadi,

and R. Elliott, “Hardness and mechanical property

relationships in directionally solidified aluminium-silicon

eutectic alloys with different silicon morphologies,” Journal

of Materials Science, vol. 28, no. 21, pp. 5957–5962, 1993,

doi: 10.1007/BF00365208.

D. Masnur, Suyitno, and V. Malau, “The Influence of Mold

Material on Cooling Curve, Solidification Parameters, and

Micro-hardness of Al–6wt .% Si in Unidirectional

Solidification,” IOP Conf. Series: Materials Science and

Engineering, vol. 547, 2019, doi: 10.1088/1757-

X/547/1/012014.

M. Farkašová, E. Tillová, and M. Chalupová, “Modification

of Al-Si-Cu cast alloy,” FME Transactions, vol. 41, no. 3,

pp. 210–215, 2013.

G. Timelli, G. Camicia, and S. Ferraro, “Effect of grain

refinement and cooling rate on the microstructure and

mechanical properties of secondary Al-Si-Cu alloys,”

Journal of Materials Engineering and Performance, vol. 23,

no. 2, pp. 611–621, 2014, doi: 10.1007/s11665-013-0757-y.

L. Bolzoni, M. Xia, and N. H. Babu, “Formation of equiaxed

crystal structures in directionally solidified Al-Si alloys using

Nb-based heterogeneous nuclei,” Nature Publishing Group,

no. December, pp. 1–10, 2016, doi: 10.1038/srep39554.

M. Nowak, L. Bolzoni, and N. Hari Babu, “Grain refinement

of Al-Si alloys by Nb-B inoculation. Part I: Concept

development and effect on binary alloys,” Materials and

Design, vol. 66, no. PA, pp. 366–375, 2015, doi:

1016/j.matdes.2014.08.066.

M. Okayasu, S. Takeuchi, S. Wu, and T. Ochi, “Effects of

Sb, Sr, and Bi on the material properties of cast Al-Si-Cu

alloys produced through heated mold continuous casting,”

Journal of Mechanical Science and Technology, vol. 30, no.

, pp. 1139–1147, 2016, doi: 10.1007/s12206-016-0218-2.

Q. Wang, Y. X. Li, and X. C. Li, “Grain Refinement of Al –

Si Alloys and the Efficiency Assessment by Recognition of

Cooling Curves,” Metallurgical and Materials Tranactions

A, vol. 34, no. May, pp. 1175–1182, 2003.

G. K. Sigworth and T. A. Kuhn, “Grain refinement of

aluminum casting alloys,” International Journal of

Metalcasting, vol. 1, no. 1, pp. 31–40, 2007, doi:

1361/asmhba0005302.

Z. Fan et al., “Grain refining mechanism in the Al / Al – Ti –

B system,” ACTA MATERIALIA, vol. 84, pp. 292–304, 2015,

doi: 10.1016/j.actamat.2014.10.055.

K. Kashyap and T. Chandrashekar, “Effects and mechanisms

of grain refinement in aluminium alloys,” Bulletin of

Materials Science, vol. 24, no. 4, pp. 345–353, 2001, doi:

1007/BF02708630.

Disseminating Information on the Research of Mechanical Engineering - Jurnal Polimesin Volume 22, No. 4, August 2024 388

M. Easton and D. StJohn, “Grain Refinement of Aluminum

Alloys : Part I . The Nucleant and Solute Paradigms — A

Review of the Literature,” Metallurgical and Materials

Transactions A, vol. 30, no. June, pp. 1613–1623, 1999, doi:

1007/s11661-999-0098-5.

M. Easton and D. StJohn, “Grain refinement of aluminum

alloys: Part II. Confirmation of, and a mechanism for, the

solute paradigm,” Metallurgical and Materials Transactions

A, vol. 30, no. June, pp. 1625–1633, 1999, doi:

1007/s11661-999-0099-4.

M. Riestra, E. Ghassemali, T. Bogdanoff, and S. Seifeddine,

“Interactive effects of grain refinement, eutectic modification

and solidification rate on tensile properties of Al-10Si alloy,”

Materials Science and Engineering A, vol. 703, no. July, pp.

–279, 2017, doi: 10.1016/j.msea.2017.07.074.

D. Masnur, V. Malau, and S. Suyitno, “Composition Profile

and Microstructure Formation of Unidirectionally Solidified

Al–4.5 wt% Cu,” Inter Metalcast, vol. 16, no. 1, pp. 349–

, Jan. 2022, doi: 10.1007/s40962-021-00598-4.

D. Masnur, V. Malau, and S. Suyitno, “The dependency of

the microhardnes on microstructure and solidification

parameters of directionally solidified Al–4.5wt.%Cu in clay

mold,” JMES, vol. 14, no. 3, pp. 7125–7131, Sep. 2020, doi:

15282/jmes.14.3.2020.13.0558.

V. Raghavan, “Al-Cu-Si (aluminum-copper-silicon),”

Journal of Phase Equilibria and Diffusion, vol. 33, no. 1, pp.

–61, 2012, doi: 10.1007/s11669-012-9982-6.

D. G. Eskin, Q. Du, D. Ruvalcaba, and L. Katgerman,

“Experimental study of structure formation in binary Al-Cu

alloys at different cooling rates,” Materials Science and

Engineering A, vol. 405, no. 1–2, pp. 1–10, 2005, doi:

1016/j.msea.2005.05.105.

W. Desrosin, L. Boycho, V. Scheiber, C. M. Méndez, C. E.

Schvezov, and A. E. Ares, “Evolution of Metallographic

Parameters during Horizontal Unidirectional Solidification of

Zn-Sn Alloys,” Procedia Materials Science, vol. 8, pp. 968–

, 2015, doi: 10.1016/j.mspro.2015.04.158.

H. Kaya, U. Böyük, E. Çadirli, and N. Maraşli, “Influence of

growth rate on microstructure, microhardness, and electrical

resistivity of directionally solidified Al-7 wt% Ni hypoeutectic alloy,” Metals and Materials International, vol. 19,

no. 1, pp. 39–44, 2013, doi: 10.1007/s12540-013-1007-4.

E. Çadirli, “Effect of solidification parameters on mechanical

properties of directionally solidified Al-Rich Al-Cu alloys,”

Metals and Materials International, vol. 19, no. 3, pp. 411–

, 2013, doi: 10.1007/s12540-013-3006-x.

S. Farahany, Mohd. H. Idris, A. Ourdjini, F. Faris, and H.

Ghandvar, “Evaluation of the effect of grain refiners on the

solidification characteristics of an Sr-modified ADC12 diecasting alloy by cooling curve thermal analysis,” J Therm

Anal Calorim, vol. 119, no. 3, pp. 1593–1601, Mar. 2015,

doi: 10.1007/s10973-014-4367-1.

M. Johnsson, L. Backerud, and G. K. Sigworth, “Study of the

mechanism of grain refinement of aluminum after additions

of Ti- and B-containing master alloys,” Metallurgical

Transactions A, vol. 24, no. 2, pp. 481–491, 1993, doi:

1007/BF02657335.

M. Vončina, J. Medved, L. Jerina, I. Paulin, P. Cvahte, and

M. Steinacher, “The Impact of AL-TI-B Grain-Refiners from

Different Manufacturers on Wrought AL-alloy,” Archives of

Metallurgy and Materials, pp. 739–746, Mar. 2019, doi:

24425/amm.2019.127607.

M. Buchmann and M. Rettenmayr, “Microstructure

evolution during melting and resolidification in a

temperature gradient,” Journal of Crystal Growth, vol. 284,

no. 3–4, pp. 544–553, 2005, doi:

1016/j.jcrysgro.2005.06.044.

A. Kolahdooz, S. Nourouzi, M. Bakhshi, and S. J.

Hosseinipour, “Investigation of the controlled atmosphere of

semisolid metal processing of A356 aluminium alloy,”

Journal of Mechanical Science and Technology, vol. 28, no.

, pp. 4267–4274, 2014, doi: 10.1007/s12206-014-0940-6.

O. L. Rocha, C. A. Siqueira, and A. Garcia, “Heat flow

parameters affecting dendrite spacings during unsteady-state

solidification of Sn-Pb and Al-Cu alloys,” Metallurgical and

Materials Transactions A, vol. 34, no. 4, pp. 995–1006,

, doi: 10.1007/s11661-003-0229-3.

M. Gündüz, H. Kaya, E. Çadırlı, N. Maraşlı, K. Keşlioğlu,

and B. Saatçi, “Effect of solidification processing parameters

on the cellular spacings in the Al–0.1wt% Ti and Al–0.5wt%

Ti alloys,” Journal of Alloys and Compounds, vol. 439, no.

–2, pp. 114–127, Jul. 2007, doi:

1016/j.jallcom.2006.08.246.

A. J. Vasconcelos, R. H. Kikuchi, A. S. Barros, and T. A.

Costa, “Interconnection between microstructure and

microhardness of directionally solidified binary Al-6wt .%

Cu and multicomponent Al-6wt .% Cu-8wt .% Si alloys,”

Annals of the Brazilian Academy of Sciences, vol. 88, no. 2,

pp. 1099–1111, 2016, doi: 10.1590/0001-




DOI: http://dx.doi.org/10.30811/jpl.v22i4.5234

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia