Investigation of pressure distribution in an Archimedes Screw Turbine with head below one meter using CFD

Muhammad Ilham Maulana, Ratna Sary, A. Syuhada, Siska Mayasari, Yusmanizar Yusmanizar

Abstract


In the shift from fossil fuel-based energy, the imperative of tapping into water resources as a renewable energy reservoir is underscored. This study delves into the potential of low-head water for small-scale power generation, specifically focusing on the Archimedes turbine designed for operation in such conditions. The primary objective is meticulously examining pressure characteristics at varying heads (0.7 m, 0.8 m, 0.9 m, and 1 m) using Computational Fluid Dynamics (CFD). These parameters play a crucial role in defining the turbine's performance landscape. Data analysis reveals a notable reduction in the Archimedes turbine's efficiency as the head diminishes. Interestingly, the double-screw Archimedes turbine demonstrates optimal performance at higher flow rates, particularly at a volumetric flow rate of 0.025 m3/s. Despite the peak performance at a 1-meter head, discernible pressure patterns suggest sufficient kinetic energy within lower head flows (down to 0.7 meters) to facilitate turbine rotation. This study contributes to a more rigorous understanding of the Archimedes turbine's performance under varied head conditions, emphasizing the potential for practical power generation at lower head levels.


Keywords


Renewable Energy, Archimedes, Computational Fluid Dynamics (CFD), Turbine Head, Performance

Full Text:

PDF

References


W. Bank, I. Energy Agency, I. Renewable Energy Agency, U. Nations Statistics Division, and W. Health Organization, “A joint report of the custodian agencies THE ENERGY PROGRESS REPORT,” 2020. [Online]. Available: www.worldbank.org

IESR, “Indonesia Energy Transition Outlook 2022,” Iesr, pp. 1–93, 2021.

T. Government, E. B. Plan, N. Electricity, G. Plan, and N. D. Contributions, “RUPTL 2021-30 : PLN steps up ambitions to accelerate clean energy investments in Indonesia,” pp. 3–6, 2021.

O. Shofiyah, C. Mutia Gunandar, and Tasha Devi Ariyanti Vincensia, “Efektivitas pembangkit listrik tenaga mikrohidro sebagai penyedia energi baru terbarukan berbasis komunitas,” SEESDGJ, vol. 1, no. 1, pp. 63–77, 2023, doi: 10.61511/seesdgj.v1.

S. C. Simmons and W. D. Lubitz, “Archimedes screw generators for sustainable micro-hydropower production,” Int. J. Energy Res., vol. 45, no. 12, pp. 17480–17501, 2021, doi: 10.1002/er.6893.

A. Dinas Energi dan Sumber Daya Mineral, “Kapasitas Potensi Pembangkit Tenaga Air menurut Pembangkit Listrik tenaga air yang diakumulasikan hingga tahun 2021,” 2023.

A. YoosefDoost and W. D. Lubitz, “Archimedes screw turbines: A sustainable development solution for green and renewable energy generation-a review of potential and design procedures,” Sustain., vol. 12, no. 18, 2020, doi: 10.3390/SU12187352.

C. Purece and L. Corlan, “Archimedean screw as fish-friendly turbines for harnessing hydropower potential,” E3S Web Conf., vol. 286, p. 02007, 2021, doi: 10.1051/e3sconf/202128602007.

A. Y. and H. MI Maulana, “Initial Review and Design of Archimedes Screw Turbine As Low Head Power Station,” Proc. Natl. Conf. Technol. Eng, no. 7, pp. 111–115, 2015.

C. Rorres, “The Turn of the Screw: Optimal Design of an Archimedes Screw,” J. Hydraul. Eng., vol. 126, no. 1, pp. 72–80, 2000, doi: 10.1061/(asce)0733-9429(2000)126:1(72).

M. A. N. Mu’tasim, N. S. Azahari, and A. A. A. Adam, “Prediction of particle impact on an archimedes screw runner blade for micro hydro turbine,” Appl. Mech. Mater., vol. 465–466, no. June 2017, pp. 552–556, 2014, doi: 10.4028/www.scientific.net/AMM.465-466.552.

M. I. Maulana, A. Syuhada, and M. Nawawi, “Blade number impact on pressure and performance of Archimedes screw turbine using CFD,” AIP Conf. Proc., vol. 1931, no. February 2018, 2018, doi: 10.1063/1.5024096.

D. M. Nuernbergk and C. Rorres, “Analytical Model for Water Inflow of an Archimedes Screw Used in Hydropower Generation,” J. Hydraul. Eng., vol. 139, no. 2, pp. 213–220, 2013, doi: 10.1061/(asce)hy.1943-7900.0000661.

M. I. Maulana, A. Syuhada, and R. Kurniawan, “Experimental study on the effect of flow rate on the performance of two-blade archimedes screw turbine,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 61, no. 1, pp. 10–19, 2019.

G. Dellinger, S. Simmons, W. D. Lubitz, P. A. Garambois, and N. Dellinger, “Effect of slope and number of blades on Archimedes screw generator power output,” Renew. Energy, vol. 136, pp. 896–908, 2019, doi: 10.1016/j.renene.2019.01.060.

M. I. Maulana, Darwin, and G. S. Putra, “Performance of Single Screw Archimedes Turbine Using Transmission,” IOP Conf. Ser. Mater. Sci. Eng., vol. 536, no. 1, 2019, doi: 10.1088/1757-899X/536/1/012022.

N. Adhikari, N. Adhikari, and D. Bastakoti, “Study on Effect of Flow Rate and Number of Blades on Sizing of Archimedes Study on Effect of Flow Rate and Number of Blades on Sizing of Archimedes Screw Turbine,” no. July, 2022.

A. T. Ubando, I. A. V. Marfori, M. S. Peradilla, C. L. Sy, A. M. A. Calapatia, and W. H. Chen, “Sustainable Manufacturability of Archimedes Screw Turbines: A Critical Review,” J. Manuf. Mater. Process., vol. 6, no. 6, pp. 1–26, 2022, doi: 10.3390/jmmp6060161.

I. Syam, M. I. Maulana, and A. Syuhada, “Design and Performance of Archimedes Single Screw Turbine as Micro Hydro Power Plant with Flow Rate Debit Variations (Case Study in Air Dingin, Samadua - South Aceh),” J. Inotera, vol. 4, no. 1, p. 13, 2019, doi: 10.31572/inotera.vol4.iss1.2019.id71.

M. Hasan Basri, A. Muhtadi, and D. Hasan, “Design of a Laboratory Scale Archemedes Screw Turbine Model Hydroelectric Power Station (PLTA) Simulator,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 9, no. 3, pp. 558–570, 2023, doi: 10.26555/jiteki.v9i3.26309.

M. I. Maulana, A. Syuhada, and F. Almas, “Computational fluid dynamic predictions on effects of screw number on performance of single blade Archimedes screw turbine,” E3S Web Conf., vol. 67, 2018, doi: 10.1051/e3sconf/20186704027.

G. Dellinger et al., “Computational fluid dynamics modeling for the design of Archimedes Screw Generator,” Renew. Energy, vol. 118, pp. 847–857, 2018, doi: 10.1016/j.renene.2017.10.093.

K. Shahverdi, “Modeling for prediction of design parameters for micro-hydro Archimedean screw turbines,” Sustain. Energy Technol. Assessments, vol. 47, p. 101554, Oct. 2021, doi: 10.1016/J.SETA.2021.101554.

K. Shahverdi, R. Loni, J. M. Maestre, and G. Najafi, “CFD numerical simulation of Archimedes screw turbine with power output analysis,” Ocean Eng., vol. 231, no. June 2020, p. 108718, 2021, doi: 10.1016/j.oceaneng.2021.108718.

Launder B. E. and S. D. B., “MAN - ANSYS Fluent User’ s Guide Releasde 15.0,” Knowl. Creat. Diffus. Util., vol. 15317, no. November, pp. 724–746, 2013.

B. Darmono and H. Pranoto, “Archimedes Screw Turbines (ASTs) Performance Analysis using CFD Software Based on Variation of Blades Distance and Thread Number on The Pico Hydro Powerplant,” Int. J. Adv. Technol. Mech. Mechatronics Mater., vol. 3, no. 1, pp. 18–25, 2022, doi: 10.37869/ijatec.v3i1.53.




DOI: http://dx.doi.org/10.30811/jpl.v22i2.4901

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia