Biomechanics and biocompatibility assessment of bone drilling for surgical application: asystematic literature review

Turnad Lenggo Ginta Lenggo Ginta, Mujiarto Mujiarto, Jufriadi Jufriadi, Nanang Setyobudi, Katri Yulianto, Dwi Jaya Febriansyah, Muizuddin Azka

Abstract


This systematic literature review delves into the intricate relationship between biomechanics and biocompatibility within the context of bone drilling for surgical applications. It meticulously analyzes the forces, stresses, and strains that bone undergoes during drilling, shedding light on essential variables crucial for enhancing surgical efficacy. Moreover, it scrutinizes the mechanical attributes of drilling tools, particularly drill bits, assessing factors such as material composition, design intricacies, and heat generation, all of which profoundly influence drilling performance. The review also thoroughly investigates the implications of drilling materials on bone tissue biocompatibility, addressing concerns such as corrosion, wear debris, and potential toxicity. By synthesizing current research, it offers up-to-date insights into advancements and strategies aimed at overcoming challenges in bone drilling. Ultimately, this review serves to refine bone drilling techniques, advocating for safer and more efficient surgical practices, and ultimately aiming to improve patient outcomes through a comprehensive understanding of biomechanical and biocompatibility considerations.


Keywords


Biomechanics, biocompatibility, surgical application, bone drilling.

Full Text:

PDF

References


M. A. Islam, N. S. Kamarrudin, R. Daud, S. N. F. Mohd Noor, A. I. Azmi, and Z. M. Razlan, “A Review of Surgical Bone Drilling and Drill Bit Heat Generation for Implantation,” Metals (Basel), vol. 12, no. 11, p. 1900, Nov. 2022, doi: 10.3390/met12111900.

J. Lee, C. L. Chavez, and J. Park, “Parameters affecting mechanical and thermal responses in bone drilling: A review,” J Biomech, vol. 71, pp. 4–21, Apr. 2018, doi: 10.1016/j.jbiomech.2018.02.025.

S. Kumar Shetty, R. Shetty, H. Sarfaraz, R. BanuRauf, F. Thenukutty, and N. Dilip, “BIOLOGICAL DRILLING PROTOCOL IN DENTAL IMPLANTOLOGY - A REVIEW,” Int J Adv Res (Indore), vol. 10, no. 10, pp. 153–161, Oct. 2022, doi: 10.21474/IJAR01/15474.

M. Mediouniet al., “An overview of thermal necrosis: present and future,” Curr Med Res Opin, vol. 35, no. 9, pp. 1555–1562, Sep. 2019, doi: 10.1080/03007995.2019.1603671.

A. B. Karakullukcu, E. Taban, and O. O. Ojo, “Biocompatibility of biomaterials and test methods: a review,” Materials Testing, vol. 65, no. 4, pp. 545–559, Apr. 2023, doi: 10.1515/mt-2022-0195.

M. Mediouniet al., “Optimal parameters to avoid thermal necrosis during bone drilling: A finite element analysis,” Journal of Orthopaedic Research, vol. 35, no. 11, pp. 2386–2391, Nov. 2017, doi: 10.1002/jor.23542.

K. Peters, R. E. Unger, and C. J. Kirkpatrick, “Biocompatibility Testing,” in Biomedical Materials, Cham: Springer International Publishing, 2021, pp. 423–453. doi: 10.1007/978-3-030-49206-9_13.

Y.-C. Chen et al., “Assessment of thermal necrosis risk regions for different bone qualities as a function of drilling parameters,” Comput Methods Programs Biomed, vol. 162, pp. 253–261, Aug. 2018, doi: 10.1016/j.cmpb.2018.05.018.

S. Hosseinpour, A. Gaudin, and O. A. Peters, “A critical analysis of research methods and experimental models to study biocompatibility of endodontic materials,” IntEndod J, vol. 55, no. S2, pp. 346–369, Apr. 2022, doi: 10.1111/iej.13701.

H. K. Raut, R. Das, Z. Liu, X. Liu, and S. Ramakrishna, “Biocompatibility of Biomaterials for Tissue Regeneration or Replacement,” Biotechnol J, vol. 15, no. 12, Dec. 2020, doi: 10.1002/biot.202000160.

S. Adarsh Rolla, M. S. Metri, P. A Saraf, and L. H Lingaraj, “BIOCOMPATIBILITY OF DENTAL MATERIALS: A REVIEW,” Int J Sci Res, pp. 61–63, Jun. 2022, doi: 10.36106/ijsr/9405258.

C. Samarasinghe, M. Uddin, S. Bari, and C. Xian, “Surgical Bone Drilling: A Review,” in Volume 3: Biomedical and Biotechnology Engineering, American Society of Mechanical Engineers, Nov. 2019. doi: 10.1115/IMECE2019-10945.

M. G. Fernandes, E. M. Fonseca, and R. N. Jorge, “Thermo-mechanical stresses distribution on bone drilling: Numerical and experimental procedures,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 233, no. 4, pp. 637–646, Apr. 2019, doi: 10.1177/1464420716689337.

U. Teicher, A. Ben Achour, A. Nestler, A. Brosius, and G. Lauer, “Process based analysis of manually controlled drilling processes for bone,” 2018, p. 070025. doi: 10.1063/1.5034921.

J. Sui and N. Sugita, “Experimental Study of Thrust Force and Torque for Drilling Cortical Bone,” Ann Biomed Eng, vol. 47, no. 3, pp. 802–812, Mar. 2019, doi: 10.1007/s10439-018-02196-8.

K. Alam, R. Muhammad, A. Shamsuzzoha, A. AlYahmadi, and N. Ahmed, “Quantitative Analysis of Force and Torque in Bone Drilling,” The Journal of Engineering Research [TJER], vol. 14, no. 1, p. 39, Mar. 2017, doi: 10.24200/tjer.vol14iss1pp39-48.

O. Kyrkach, V. Khavin, and B. Kirkach, “A Model for the Calculation of the Thrust Force and Torque during Bone Tissue Drilling,” in 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM), IEEE, Feb. 2019, pp. 1–4. doi: 10.1109/CADSM.2019.8779252.

V. Prasannavenkadesan and P. Pandithevan, “An in-silico bone drilling protocol to control thrust forces using finite element analysis coupled with the constitutive models,” ProcInstMechEng C J MechEngSci, vol. 236, no. 15, pp. 8201–8210, Aug. 2022, doi: 10.1177/09544062221088403.

W. A. Lughmani, K. Bouazza-Marouf, and I. Ashcroft, “Drilling in cortical bone: a finite element model and experimental investigations,” J MechBehav Biomed Mater, vol. 42, pp. 32–42, Feb. 2015, doi: 10.1016/j.jmbbm.2014.10.017.

R. Zdero, T. MacAvelia, and F. Janabi-Sharifi, “Force and Torque Measurements of Surgical Drilling Into Whole Bone,” in Experimental Methods in Orthopaedic Biomechanics, Elsevier, 2017, pp. 85–100.doi: 10.1016/B978-0-12-803802-4.00006-8.

M. Sarparast, M. Ghoreishi, T. Jahangirpoor, and V. Tahmasbi, “Modelling and optimisation of temperature and force behaviour in high-speed bone drilling,” Biotechnology & Biotechnological Equipment, vol. 33, no. 1, pp. 1616–1625, Jan. 2019, doi: 10.1080/13102818.2019.1684841.

G. Singh, A. Gahi, V. Jain, and D. Gupta, “An investigation on thermal necrosis during bone drilling,” International Journal of Machining and Machinability of Materials, vol. 18, no. 4, p. 341, 2016, doi: 10.1504/IJMMM.2016.077708.

H.-Y. Lin et al., “Comparison of the physical, thermal, and biological effects on implant bone site when using either zirconia or stainless-steel drill for implant bone site preparation,” Journal of the Formosan Medical Association, Jan. 2024, doi: 10.1016/j.jfma.2024.01.011.

M. Sarparast, M. Ghoreishi, T. Jahangirpoor, and V. Tahmasbi, “Experimental and finite element investigation of high-speed bone drilling: evaluation of force and temperature,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 42, no. 6, p. 349, Jun. 2020, doi: 10.1007/s40430-020-02436-w.

Y. C. Lin, X.-H. Zhu, W.-Y.Dong, H. Yang, Y.-W. Xiao, and N. Kotkunde, “Effects of deformation parameters and stress triaxiality on the fracture behaviors and microstructural evolution of an Al-Zn-Mg-Cu alloy,” J Alloys Compd, vol. 832, p. 154988, Aug. 2020, doi: 10.1016/j.jallcom.2020.154988.

N. B. Nagel, M. A. Sanchez-Nagel, F. Zhang, X. Garcia, and B. Lee, “Coupled Numerical Evaluations of the Geomechanical Interactions Between a Hydraulic Fracture Stimulation and a Natural Fracture System in Shale Formations,” Rock Mech Rock Eng, vol. 46, no. 3, pp. 581–609, May 2013, doi: 10.1007/s00603-013-0391-x.

B. Izzawati, R. Daud, M. Afendi, M. Abdul Majid, N. A. M. Zain, and Y. Bajuri, “Stress analysis of implant-bone fixation at different fracture angle,” J PhysConfSer, vol. 908, p. 012019, Oct. 2017, doi: 10.1088/1742-6596/908/1/012019.

F. Assanah and Y. Khan, “Cell responses to physical forces, and how they inform the design of tissue-engineered constructs for bone repair: a review,” J Mater Sci, vol. 53, no. 8, pp. 5618–5640, Apr. 2018, doi: 10.1007/s10853-017-1948-y.

L. Qi, X. Wang, and M. Q. Meng, “3D finite element modeling and analysis of dynamic force in bone drilling for orthopedic surgery,” Int J Numer Method Biomed Eng, vol. 30, no. 9, pp. 845–856, Sep. 2014, doi: 10.1002/cnm.2631.

M. G. Fernandes, E. M. Fonseca, and R. N. Jorge, “Thermo-mechanical stresses distribution on bone drilling: Numerical and experimental procedures,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 233, no. 4, pp. 637–646, Apr. 2019, doi: 10.1177/1464420716689337.

P. Christen and R. Müller, “In vivo Visualisation and Quantification of Bone Resorption and Bone Formation from Time-Lapse Imaging,” CurrOsteoporos Rep, vol. 15, no. 4, pp. 311–317, Aug. 2017, doi: 10.1007/s11914-017-0372-1.

L. Li, S. Yang, W. Peng, H. Ding, and G. Wang, “A CT Image-Based Virtual Sensing Method to Estimate Bone Drilling Force for Surgical Robots,” IEEE Trans Biomed Eng, vol. 69, no. 2, pp. 871–881, Feb. 2022, doi: 10.1109/TBME.2021.3108400.

P. Christen and R. Müller, “In vivo Visualisation and Quantification of Bone Resorption and Bone Formation from Time-Lapse Imaging,” CurrOsteoporos Rep, vol. 15, no. 4, pp. 311–317, Aug. 2017, doi: 10.1007/s11914-017-0372-1.

L. Bogunovic, S. M. Cherney, M. A. Rothermich, and M. J. Gardner, “Biomechanical Considerations for Surgical Stabilization of Osteoporotic Fractures,” Orthopedic Clinics of North America, vol. 44, no. 2, pp. 183–200, Apr. 2013, doi: 10.1016/j.ocl.2013.01.006.

V. Glatt, C. H. Evans, and K. Tetsworth, “A Concert between Biology and Biomechanics: The Influence of the Mechanical Environment on Bone Healing,” Front Physiol, vol. 7, Jan. 2017, doi: 10.3389/fphys.2016.00678.

A. K. Mehar, S. Kotni, S. S. Mahapatra, and S. K. Patel, “A comparative study on drilling performance of hydroxyapatite-polycarbonate and hydroxyapatite-polysulfone composites using principal component analysis methodology for orthopaedic applications,” Mater Today Proc, vol. 33, pp. 5174–5178, 2020, doi: 10.1016/j.matpr.2020.02.875.

N. N. Medvedeva, D. V Kiprin, A. A. Levenets, V. V Salmin, and N. S. Gorbunov, “Features of physical and mechanical properties of materials used in orthopedic rehabilitation of patients,” IOP ConfSer Mater SciEng, vol. 734, no. 1, p. 012182, Jan. 2020, doi: 10.1088/1757-899X/734/1/012182.

B. Basu, “Mechanical Properties of Biomaterials,” 2017, pp. 175–222. doi: 10.1007/978-981-10-3059-8_6.

M. Nakai and M. Niinomi, “Mechanical Property of Biomedical Materials,” in Novel Structured Metallic and Inorganic Materials, Singapore: Springer Singapore, 2019, pp. 385–397. doi: 10.1007/978-981-13-7611-5_26.

J. Lee, C. L. Chavez, and J. Park, “Parameters affecting mechanical and thermal responses in bone drilling: A review,” J Biomech, vol. 71, pp. 4–21, Apr. 2018, doi: 10.1016/j.jbiomech.2018.02.025.

K. Suzuki et al., “Heat generation by ultrasonic bone curette comparing with high-speed drill,” ActaNeurochir (Wien), vol. 160, no. 4, pp. 721–725, Apr. 2018, doi: 10.1007/s00701-017-3445-0.

E. Shakouri, H. HaghighiHassanalideh, and S. Fotuhi, “Bone drilling with internal gas cooling: Experimental and statistical investigation of the effect of cooling with CO2 on reduction of temperature rise due to drill bit wear,” Advances in Production Engineering & Management, vol. 16, no. 2, pp. 199–211, Jun. 2021, doi: 10.14743/apem2021.2.394.

M. Aghvami, J. B. Brunski, U. Serdar Tulu, C.-H. Chen, and J. A. Helms, “A Thermal and Biological Analysis of Bone Drilling,” J BiomechEng, vol. 140, no. 10, Oct. 2018, doi: 10.1115/1.4040312.

Y.-C. Chen, Y.-K.Tu, J.-Y.Zhuang, Y.-J.Tsai, C.-Y.Yen, and C.-K. Hsiao, “Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model,” Med BiolEngComput, vol. 55, no. 11, pp. 1949–1957, Nov. 2017, doi: 10.1007/s11517-017-1644-8.

A. Thakur, A. Kumar, S. Kaya, R. Marzouki, F. Zhang, and L. Guo, “Recent Advancements in Surface Modification, Characterization and Functionalization for Enhancing the Biocompatibility and Corrosion Resistance of Biomedical Implants,” Coatings, vol. 12, no. 10, p. 1459, Oct. 2022, doi: 10.3390/coatings12101459.

M. Oprea, S. Constantin, C. Călin, and I. Pătrașcu, “The biocompatibility of titanium-alloy utilized in complex oral rehabilitations,” Romanian Journal of Stomatology, vol. 62, no. 2, pp. 60–64, Jun. 2016, doi: 10.37897/RJS.2016.2.2.

S. Ali et al., “Biocompatibility and corrosion resistance of metallic biomaterials,” Corrosion Reviews, vol. 38, no. 5, pp. 381–402, Oct. 2020, doi: 10.1515/corrrev-2020-0001.

M. J. Jackson, T. Novakov, and M. B. da Silva, “Modeling and Machining of Medical Materials,” in Machining with Nanomaterials, Cham: Springer International Publishing, 2015, pp. 231–271. doi: 10.1007/978-3-319-19009-9_9.

A. M. Ribeiro, T. H. S. Flores-Sahagun, and R. C. Paredes, “A perspective on molybdenum biocompatibility and antimicrobial activity for applications in implants,” J Mater Sci, vol. 51, no. 6, pp. 2806–2816, Mar. 2016, doi: 10.1007/s10853-015-9664-y.

N. Xu, J. Fu, L. Zhao, P. K. Chu, and K. Huo, “Biofunctional Elements Incorporated Nano/Microstructured Coatings on Titanium Implants with Enhanced Osteogenic and Antibacterial Performance,” AdvHealthc Mater, vol. 9, no. 23, Dec. 2020, doi: 10.1002/adhm.202000681.

O. Hussain, S. Saleem, and B. Ahmad, “Implant materials for knee and hip joint replacement: A review from the tribological perspective,” IOP ConfSer Mater SciEng, vol. 561, no. 1, p. 012007, Oct. 2019, doi: 10.1088/1757-899X/561/1/012007.

S. Devgan and S. S. Sidhu, “Evolution of surface modification trends in bone related biomaterials: A review,” Mater ChemPhys, vol. 233, pp. 68–78, May 2019, doi: 10.1016/j.matchemphys.2019.05.039.

F. Amewoui, G. Le Coz, A. S. Bonnet, and A. Moufki, “Bone drilling: an identification of heat sources,” Comput Methods Biomech Biomed Engin, vol. 23, no. sup1, pp. S10–S11, Oct. 2020, doi: 10.1080/10255842.2020.1813418.

“Experimental Investigation of Delamination Formed by Bone Drilling,” Tehnickivjesnik - Technical Gazette, vol. 27, no. 3, Jun. 2020, doi: 10.17559/TV-20181228185947.

C. A. Andreucci, E. M. M. Fonseca, and R. N. Jorge, “Bio-lubricant Properties Analysis of Drilling an Innovative Design of Bioactive Kinetic Screw into Bone,” Designs (Basel), vol. 7, no. 1, p. 21, Feb. 2023, doi: 10.3390/designs7010021.

Y.-C. Chen, Y.-K.Tu, J.-Y.Zhuang, Y.-J.Tsai, C.-Y.Yen, and C.-K. Hsiao, “Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model,” Med BiolEngComput, vol. 55, no. 11, pp. 1949–1957, Nov. 2017, doi: 10.1007/s11517-017-1644-8.

M. F. A. Akhbar and A. W. Sulong, “Surgical Drill Bit Design and Thermomechanical Damage in Bone Drilling: A Review,” Ann Biomed Eng, vol. 49, no. 1, pp. 29–56, Jan. 2021, doi: 10.1007/s10439-020-02600-2.

M. F. Ali Akhbar and A. R. Yusoff, “Drilling of bone: Effect of drill bit geometries on thermal osteonecrosis risk regions,” ProcInstMechEng H, vol. 233, no. 2, pp. 207–218, Feb. 2019, doi: 10.1177/0954411918819113.

L. Qi, X. Wang, and M. Q. Meng, “3D finite element modeling and analysis of dynamic force in bone drilling for orthopedic surgery,” Int J Numer Method Biomed Eng, vol. 30, no. 9, pp. 845–856, Sep. 2014, doi: 10.1002/cnm.2631.

A. Bohra, M. Chandrasekaran, and N. Teyi, “Bone drilling investigation and possible research: A state of the art review,” 2019, p. 050022. doi: 10.1063/1.5117994.

P. Antil, S. Kumar Antil, C. Prakash, G. Królczyk, and C. Pruncu, “Multi-objective optimization of drilling parameters for orthopaedic implants,” Measurement and Control, vol. 53, no. 9–10, pp. 1902–1910, Nov. 2020, doi: 10.1177/0020294020947126.

P. Hannon, “A brief review of current orthopedic implant device issues: biomechanics and biocompatibility,” BiolEng Med, vol. 1, no. 1, 2016, doi: 10.15761/BEM.1000102.

S. B. Goodman, E. Gómez Barrena, M. Takagi, and Y. T. Konttinen, “Biocompatibility of total joint replacements: A review,” J Biomed Mater Res A, vol. 90A, no. 2, pp. 603–618, Aug. 2009, doi: 10.1002/jbm.a.32063.

“Preface,” J ICRU, vol. 19, no. 1, pp. 10–10, Dec. 2019, doi: 10.1177/1473669119894050.

B. Welke and F. Seehaus, “Special Issue on Musculoskeletal Research: Biomechanics and Biomaterials for the Treatment of Orthopedic Diseases,” Applied Sciences, vol. 12, no. 18, p. 8968, Sep. 2022, doi: 10.3390/app12188968.




DOI: http://dx.doi.org/10.30811/jpl.v22i2.4749

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia