The effect of cutting depth, feed rate, and cutting angle on surface roughness in the lathe process of aluminum 6061.

Totok Suwanda, Gilang Joy Habib Ramdhan, Nur Ardiyansyah

Abstract


In the turning process, the machining parameters have a significant impact on the product quality. Consumers frequently request that certain industries adhere to product quality standards, especially regarding surface texture. Numerous product failures have resulted in dissatisfaction among the company's clientele because many lathe operators are fixated solely on product size drawings and are unaware of factors that can impact the surface roughness value. This investigation was conducted to ascertain how machining parameters affect surface irregularity. Variations in feed rates of 47.5 mm/min and 345.6 mm/min, cutting angles of 60° and 80°, and depths of cut of 1 mm and 3 mm were utilized to conduct the investigation on aluminum alloy 6061 specimens. The results of turning were evaluated for surface roughness using a surface roughness analyzer and a macro test to determine the structure of the surface roughness. Using the Minitab 2019 application, the obtained data was then analyzed to determine the influence of each trimming parameter working individually or simultaneously. Using the method of geometric factorial analysis, integrate the research parameters. The results indicated that the surface roughness increased as the feed rate increased; the lowest surface roughness was achieved with a depth of cut of 1 mm, a feeding rate of 47.5 mm/min, and a cut angle of 80°. In this study, the surface roughness value decreased as the cutting angle increased at lower levels of feeding rate, while the surface roughness value increased at higher levels of feeding rate.


Keywords


Aluminum alloy 6061, feed rate, depth of cut, angle of cut, surface roughness.

Full Text:

PDF

References


S. Kalpakjian, S. R. Schmind, and K. S. V. Sekar, Manufacturing Engineering and Technology, Eighth Edi. Pearson Education, 2023.

F. Z. El abdelaoui, A. Jabri, and A. El Barkany, Optimization techniques for energy efficiency in machining processes—a review, vol. 125, no. 7–8. Springer London, 2023. doi: 10.1007/s00170-023-10927-y.

M. Abas, L. Sayd, R. Akhtar, Q. S. Khalid, A. M. Khan, and C. I. Pruncu, “Optimization of machining parameters of aluminum alloy 6026-T9 under MQL-assisted turning process,” J. Mater. Res. Technol., vol. 9, no. 5, pp. 10916–10940, 2020, doi: 10.1016/j.jmrt.2020.07.071.

Sunarto and S. Mawarni, “Studi Pahat Karbida Berlapis (TiAIN/TiN) pada Pembubutan Kering Kecepatan Potong Tinggi Bahan Paduan Aluminium 6061,” J. Tek. Mesin, vol. 07, no. 2, pp. 225–233, 2017.

M. H. El-Axir, M. M. Elkhabeery, and M. M. Okasha, “Modeling and Parameter Optimization for Surface Roughness and Residual Stress in Dry Turning Process,” Eng. Technol. Appl. Sci. Res., vol. 7, no. 5, pp. 2047–2055, 2017, doi: 10.48084/etasr.1560.

R. KUMAR and M. D. GUPTA, Manufacturing Processes, 1st ed. PHI Learning, 2014. [Online]. Available: https://books.google.co.id/books?id=R5JeBAAAQBAJ

G. . Y. M. . & T. I. (2019). P. S. P. U. G. M. D. K. P. T. K. P. B. K. R. P. P. B. (Doctoral dissertation, S. U. Pihanda, “Pengaruh Sudut Potongutama, Gerak Makan Dan Kedalaman Potong Terhadap Kekasaran Permukaan Baja Karbonrendah Pada Proses Bubut,” 2019.

A. Zubaidi, I. Syafa, and Darmanto, “Analisis Pengaruh Kecepatan Putar Dan Kecepatan Pemakanan Terhadap Kekasaran Permukaan Material F 4CD0 Pada Mesin Bubut CNC,” Momentum, vol. 8, no. 1, pp. 40–47, 2017.

B. Siswanto and S. Sunyoto, “Pengaruh Kecepatan dan Kedalaman Potong pada Proses Pembubutan Konvensional Terhadap Kekasaran Permukaan Lubang,” J. Din. Vokasional Tek. Mesin, vol. 3, no. 2, pp. 82–86, 2018, doi: 10.21831/dinamika.v3i2.21403.

T. Suwanda, N. A. Wijayanto, and N. Ardiyansyah, “Comparison of Tool Wear Rate of Insert Lathe TNMG160404-MA and,” vol. 21, no. 1, pp. 5–12, 2023.

Raul, Widiyanti, and Poppy, “Pengaruh Variasi Kecepatan Potong Dan Kedalaman Potong Pada Mesin Bubut Terhadap Tingkat Kekasaran Permukaan Benda Kerja St 41,” J. Tek. Mesin, vol. 24, no. 1, pp. 1–9, 2017.

M. A. Rambey, M. I. Hidayat, and W. Jatimurti, “Simulasi Proses Pemotongan Bubut Baja Karbon Rendah Aisi 1018 dengan Mesin Bubut Menggunakan Metode Elemen Hingga,” J. Tek. ITS, vol. 7, no. 1, pp. 85–90, 2018, doi: 10.12962/j23373539.v7i1.28441.

R. Salam and Sunarto, “Pengaruh kecepatan potong ( Vc ) terhadap kekasaran permukaan pada pembubutan kering baja ASTM A 29 menggunakan pahat karbida berlapis T itanium Aaluminium Nitrida ( TiAlN ),” J. Polimesin, vol. 18, no. 1, pp. 61–67, 2020.

Y. A, E. Indrawan, N. Helmi, A. Aziz, and Y. A. Putra, “Pengaruh Sudut Potong dan Kecepatan Putaran Spindel Terhadap Kekasaran Permukaan pada Proses Bubut Mild Steel ST 37,” INVOTEK J. Inov. Vokasional dan Teknol., vol. 19, no. 2, pp. 29–36, 2019, doi: 10.24036/invotek.v19i2.582.

M. F. Irvan, A. Qolik, and B. Basuki, “Pengaruh Metode Penyayatan Laju Tinggi dan Sudut Buang Pahat Terhadap Kekasaran Permukaan Hasil Bubut Rata Menggunakan Pahat HSS Pada Bahan Bronze,” J. Tek. Mesin dan Pembelajaran, vol. 1, no. 2, p. 1, 2019, doi: 10.17977/um054v1i2p1-4.

D. A. A. N. K. Kattab, “The effect of cutting speed and feed rate on material removal rates for several steel alloys in turning process,” Al-Rafidain J. Eng. Sci., vol. 2, no. 1, pp. 72–81, 2024.

A. Fauzi and W. Sumbodo, “Pengaruh Parameter Pemakanan Terhadap Kekasaran Permukaan ST 40 pada Mesin Bubut CNC,” J. Din. Vokasional Tek. Mesin, vol. 6, no. 1, pp. 46–57, 2021, doi: 10.21831/dinamika.v6i1.38114.




DOI: http://dx.doi.org/10.30811/jpl.v22i2.4658

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .

 

Alamat Surat :

Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia