The Impact Of Introducing Brown Gas Into The Incoming Air Flow On The Performance Of An Internal Combustion Engine

Mujahid Wahyu, Sugeng Hadi Susilo, Dianta Mustofa Kamal

Abstract


The increase in the number of motorized vehicles has led to challenges in maintaining environmental air quality, combustion efficiency, and the sustainability of fossil fuels. An innovative solution to address these issues is the utilization of brown gas. This study aims to investigate the impact of introducing brown gas into the incoming air flow on the performance of an internal combustion engine. The brown gas flow rate varies based on the gas production rate resulting from variations in the addition of NaOH (10 g/l, 20 g/l, and 30 g/l) to every 1 liter of water in the generator. Gas production rates are measured using a flow meter. The influence of brown gas on gasoline engine performance is assessed through power testing with a chassis dyno test engine and exhaust emissions testing with a gas analyzer. The findings reveal that the highest flow rate of brown gas is achieved with the addition of 30 g/l NaOH during the electrolysis process. Introducing brown gas into the incoming air flow can increase maximum engine power by 15.5% and reduce CO exhaust emissions by 23.37%.


Keywords


Brown gas, electrolysis, emission, performance, power.

Full Text:

PDF

References


J. R. Serrano, R. Novella, and P. Piqueras, “Why the development of internal combustion engines is still necessary to fight against global climate change from the perspective of transportation,” Appl. Sci., vol. 9, no. 21, 2019, doi: 10.3390/app9214597.

M. Sabeghi, M. Moghiman, and D. Gandomzadeh, “Experimental study of the effect of HHO gas injection on pollutants produced by a diesel engine at idle speed,” Int. J. Hydrogen Energy, vol. 48, no. 24, pp. 9117–9126, 2023, doi: https://doi.org/10.1016/j.ijhydene.2022.12.010.

X. Gu, M. Cheng, X. Zhang, and Y. Zeng, “The pollutant discharge improvement by introducing HHO gas into biomass boiler,” Int. J. Hydrogen Energy, vol. 46, no. 45, pp. 23292–23300, 2021, doi: https://doi.org/10.1016/j.ijhydene.2021.04.133.

S. Bhardwaj, A. Singh Verma, and S. K. Sharma, “Effect Of Brown Gas On The Performance Of A Four Stroke Gasoline Engine,” Int. J. Emerg. Technol. Adv. Eng., vol. 4, no. 1, pp. 300–308, 2014, [Online]. Available: www.ijetae.com

N. Alam and K. M. Pandey, “Experimental Study of Hydroxy Gas (HHO) Production with Variation in Current, Voltage and Electrolyte Concentration,” IOP Conf. Ser. Mater. Sci. Eng., vol. 225, no. 1, 2017, doi: 10.1088/1757-899X/225/1/012197.

A. B. Vethamony and V. Thangavel, “Experiments on the effect of temperature on HHO production by Alkaline water electrolysis,” Mater. Today Proc., 2023, doi: https://doi.org/10.1016/j.matpr.2023.03.771.

B. Subramanian and V. Thangavel, “Analysis of onsite HHO gas generation system,” Int. J. Hydrogen Energy, vol. 45, no. 28, pp. 14218–14231, 2020, doi: https://doi.org/10.1016/j.ijhydene.2020.03.159.

D. V. N. Lakshmi, T. R. Mishra, and R. D. S. S. Mohapatra, “Effects of Brown Gas Performance and Emission in a SI Engine,” Int. J. Sci. Eng. Res., vol. 4, no. 12, pp. 170–173, 2013.

H. Harman and A. Ahyar, Design of HHO Generator to Reduce Exhaust Gas Emissions and Fuel Consumption of Non-Injection Gasoline Engine, vol. 4, no. 1. 2019. doi: 10.21831/dinamika.v4i1.24276.

F. Salek, M. Zamen, S. V. Hosseini, and M. Babaie, “Novel hybrid system of pulsed HHO generator/TEG waste heat recovery for CO reduction of a gasoline engine,” Int. J. Hydrogen Energy, vol. 45, no. 43, pp. 23576–23586, 2020, doi: 10.1016/j.ijhydene.2020.06.075.

K. Ragupathy, “Modeling and analysis of diesel engine with addition of hydrogen-hydrogen-oxygen gas,” Therm. Sci., vol. 21, pp. 465–471, 2017, doi: 10.2298/TSCI17S2465R.

S. Liu, L. Zhang, Z. Wang, L. Hua, and Q. Zhang, “Investigating the combustion stability of shale gas engines under HHO,” Fuel, vol. 291, no. December 2020, 2021, doi: 10.1016/j.fuel.2020.120098.

G. Abbas Gohar and H. Raza, “Comparative Analysis of Performance Characteristics of CI Engine with and without HHO Gas (Brown Gas),” Adv. Automob. Eng., vol. 06, no. 04, 2017, doi: 10.4172/2167-7670.1000172.

T. B. Arjun, K. P. Atul, A. P. Muraleedharan, P. A. Walton, P. B. Bijinraj, and A. A. Raj, “A review on analysis of HHO gas in IC engines,” Mater. Today Proc., vol. 11, pp. 1117–1129, 2019, doi: 10.1016/j.matpr.2018.12.046.

S. Thangaraj and N. Govindan, “Investigating the pros and cons of browns gas and varying EGR on combustion, performance, and emission characteristics of diesel engine,” Environ. Sci. Pollut. Res., vol. 25, no. 1, pp. 422–435, 2018, doi: 10.1007/s11356-017-0369-4.

T. M. Ismail, K. Ramzy, M. N. Abelwhab, B. E. Elnaghi, M. Abd El-Salam, and M. I. Ismail, “Performance of hybrid compression ignition engine using hydroxy (HHO) from dry cell,” Energy Convers. Manag., vol. 155, no. September 2017, pp. 287–300, 2018, doi: 10.1016/j.enconman.2017.10.076.

M. A. El Kady, A. El Fatih Farrag, M. S. Gad, A. K. El Soly, and H. M. Abu Hashish, “Parametric study and experimental investigation of hydroxy (HHO) production using dry cell,” Fuel, vol. 282, no. July, 2020, doi: 10.1016/j.fuel.2020.118825.

A. K. El Soly, M. A. El Kady, A. E. F. Farrag, and M. S. Gad, “Comparative experimental investigation of oxyhydrogen (HHO) production rate using dry and wet cells,” Int. J. Hydrogen Energy, vol. 46, no. 24, pp. 12639–12653, 2021, doi: 10.1016/j.ijhydene.2021.01.110.

M. S. Gad and S. M. Abdel Razek, “Impact of HHO produced from dry and wet cell electrolyzers on diesel engine performance, emissions and combustion characteristics,” Int. J. Hydrogen Energy, vol. 46, no. 43, pp. 22277–22291, 2021, doi: 10.1016/j.ijhydene.2021.04.077.

R. Novriyandi, “Aplikasi Gas HHO pada Sepeda Motor 150 cc,” 2016.

Y. Wahyono, H. Sutanto, and E. Hidayanto, “Produksi gas hydrogen menggunakan metode elektrolisis dari elektrolit air dan air laut dengan penambahan katalis NaOH,” Youngster Phys. J., vol. 6, no. 4, pp. 353–359, 2017.

A. C. Yilmaz, E. Uludamar, and K. Aydin, “Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines,” Int. J. Hydrogen Energy, vol. 35, no. 20, pp. 11366–11372, 2010, doi: 10.1016/j.ijhydene.2010.07.040.

B. Subramanian and S. Ismail, “Production and use of HHO gas in IC engines,” Int. J. Hydrogen Energy, vol. 43, no. 14, pp. 7140–7154, 2018, doi: 10.1016/j.ijhydene.2018.02.120.

T. Dentom, Advance Automotive Fault Diagnosis 4th. Oxford: Elsevier Butterworth-Heinemann, 2017.

P. Jakliński and J. Czarnigowski, “An experimental investigation of the impact of added HHO gas on automotive emissions under idle conditions,” Int. J. Hydrogen Energy, vol. 45, no. 23, pp. 13119–13128, 2020, doi: 10.1016/j.ijhydene.2020.02.225.

J. Paparao and S. Murugan, “Dual-fuel diesel engine run with injected pilot biodiesel-diesel fuel blend with inducted oxy-hydrogen (HHO) gas,” Int. J. Hydrogen Energy, vol. 47, no. 40, 2022, doi: https://doi.org/10.1016/j.ijhydene.2022.03.235.

Z. Zhao, Y. Huang, X. Yu, and Guo, “Effect of brown gas (HHO) addition on combustion and emission in gasoline engine with exhaust gas recirculation (EGR) and gasoline direct injection,” J. Clean. Prod., vol. 360, 2022, doi: https://doi.org/10.1016/j.jclepro.2022.132078.

Z. Arifin and Sukoco, Pengendalian Polusi Kendaraan. Bandung: Alfabeta, 2009.




DOI: http://dx.doi.org/10.30811/jpl.v22i1.4575

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia