Harnessing CFD simulations and CAD design to optimize hydropower efficiency of a propeller turbine in the Maliringan River: acase study

David Nathanlius, Levin Halim, Bagus Made Arthaya

Abstract


This research focuses on improving hydropower production by designing a turbine for the MaliringanRiver in Kalimantan Selatan. The rotational speed and torque will be the focus of maximizing power generation. This research used Computational Fluid Dynamics (CFD) to understand how the fluid flows and how efficiently the turbine works. The simulations helped us see how the fluid flowed, the pressure differences, and the speed of the water inside the turbine. The software COMSOL Multiphysics imitates how the fluid behaves and interacts in real-life situations. The utilization of SOLIDWORKS played a crucial role in the turbine's design process, facilitating an accurate representation of the turbine's geometry and the subsequent fabrication of a prototype propeller turbine, featuring an outer diameter measuring 0.27 meters and an inner diameter measuring 0.113 meters. The methodology resulted in a power efficiency of 76.45%, showcasing the possibility of significant enhancements in the efficiency of hydropower generation. The broader ramifications of this study emphasize the feasibility of tailor-made turbines for local hydropower initiatives, thereby supporting Indonesia's renewable energy plan by providing sustainable and efficient energy alternatives. This study emphasizes the collaborative utilization of Computer-Aided Design (CAD) and CFD technologies in the progression of turbine technology, thereby establishing a basis for future investigations in hydropower optimization.

Keywords


Propeller, COMSOL, CFD, Reaction Turbine

Full Text:

PDF

References


“What role does renewable energy play in the United States?.” Accessed: Jun. 14, 2019. [Online]. Available: https://www.eia.gov/energyexplained/renewable-sources/

V. P. Sharma, D. K. Somwanshi, K. Jain, and R. K. Satankar, “A Literature Review on Renewable Energy Resource and Optimization,” IOP Conf Ser Earth Environ Sci, vol. 1084, no. 1, p. 012002, Oct. 2022, doi: 10.1088/1755-1315/1084/1/012002.

B. Sireesha and Y. Nagaraja, “An Efficient Power Management Algorithm for a Micro Grid,” TELKOMNIKA Indonesian Journal of Electrical Engineering, vol. 15, no. 1, Jul. 2015, doi: 10.11591/telkomnika.v15i1.7912.

“Menilik Perkembangan Energi Terbarukan di Negara Maju.” Accessed: May 12, 2019. [Online]. Available: https://www.kompasiana.com/zasorayya/59986ec3b6848368836904d2/menilik-perkembangan-energi-terbarukan-di-negara-maju?page=all

Z. Anisa, A. Apprianda, H. Novianto, and I. Rachman, “Micro-Hydro Power Plants (MHPP): Technical and analytical studies in creating experimental learning media for physics students,” Momentum: Physics Education Journal, pp. 53–64, Jan. 2021, doi: 10.21067/mpej.v5i1.4876.

C. Anton, “Penggunaan Energi Terbarukan di Indonesia Hanya 6,8%.” Accessed: May 12, 2019. [Online]. Available: https://ekbis.sindonews.com/berita/1115774/34/penggunaan-energi-terbarukan-di-indonesia-hanya-68

M. Kiraga, “Hydroelectric Power Plants and River Morphodynamic Processes,” Journal of Ecological Engineering, vol. 22, no. 7, pp. 163–178, Jul. 2021, doi: 10.12911/22998993/139068.

M. N.S., G. N.A., and A. G.A., “Role of Renewable Energy Sources in the World,” Journal of Renewable Energy, Electrical, and Computer Engineering, vol. 2, no. 2, p. 63, Nov. 2022, doi: 10.29103/jreece.v2i2.8779.

International Energy Agency, “Hydropower Special Market Report,” 2021. [Online]. Available: www.iea.org/t&c/

B. Mayor, I. Rodríguez-Muñoz, F. Villarroya, E. Montero, and E. López-Gunn, “The role of large and small scale hydropower for energy and water security in the Spanish Duero basin,” Sustainability (Switzerland), vol. 9, no. 10, Oct. 2017, doi: 10.3390/su9101807.

A. del M. Sabroso, “SIMULATION AND ANALYSIS OF A COMBINED ENERGY & WATER SYSTEM,” Bachelor Thesis, Universidad Carlos III de Madrid, 2019.

S. Hadi, R. J. Apdila, A. H. Purwono, E. P. Budiana, and D. D. D. P. Tjahjana, “Performance of the drag type of Horizontal Axis Water Turbine (HAWT) as effect of depth to width ratio of blade,” in INTERNATIONAL CONFERENCE ON ENGINEERING, SCIENCE AND NANOTECHNOLOGY 2016, Solo, Jan. 2017. doi: 10.1063/1.4968257.

A. Kumar, HYDROPOWER ENGINEERING For Diploma Level Courses, 3rd ed. 2008.

BPS, “Sungai yang Daerah Pengalirannya Lebih dari 100 km2 , 2015.” Accessed: Jun. 14, 2019. [Online]. Available: https://www.bps.go.id/statictable/2017/11/14/1984/rata-rata-harian-aliran-sungai-tinggi-aliran-dan-volume-air-di-beberapa-sungai-yang-daerah-pengalirannya-lebih-dari-100-km2-2015.html

R. Syahputra and I. Soesanti, “Renewable energy systems based on micro-hydro and solar photovoltaic for rural areas: A case study in Yogyakarta, Indonesia,” Energy Reports, vol. 7, pp. 472–490, Nov. 2021, doi: 10.1016/j.egyr.2021.01.015.

Y. Dewantoro Herlambang, G. Suwoto, B. Mei Hermawan, and F. Gatot Sumarno, “The effect of variations in electric load on the performance of a 3 kW Micro Hydro Power Plant using an undershot waterwheel,” Jurnal Polimesin, vol. 21, no. 2, pp. 214–218, 2023, [Online]. Available: http://e-jurnal.pnl.ac.id/polimesin

E. Quaranta et al., “Hydropower Case Study Collection: Innovative Low Head and Ecologically Improved Turbines, Hydropower in Existing Infrastructures, Hydropeaking Reduction, Digitalization and Governing Systems,” Sustainability, vol. 12, no. 21, p. 8873, Oct. 2020, doi: 10.3390/su12218873.

D. Bazzana, G. Gilioli, and B. Zaitchik, “Impact of hydropower development on rural livelihood: An agent-based exploration,” J Clean Prod, vol. 275, p. 122333, Dec. 2020, doi: 10.1016/j.jclepro.2020.122333.

L. Sun, D. Niu, K. Wang, and X. Xu, “Sustainable development pathways of hydropower in China: Interdisciplinary qualitative analysis and scenario-based system dynamics quantitative modeling,” J Clean Prod, vol. 287, p. 125528, Mar. 2021, doi: 10.1016/j.jclepro.2020.125528.

J. Geist, “Editorial: Green or red: Challenges for fish and freshwater biodiversity conservation related to hydropower,” Aquat Conserv, vol. 31, no. 7, pp. 1551–1558, Jul. 2021, doi: 10.1002/aqc.3597.

Y. Fan, D. Zhang, and J. Li, “A Control Scheme for Variable-Speed Micro-Hydropower Plants,” Sustainability, vol. 10, no. 11, p. 4333, Nov. 2018, doi: 10.3390/su10114333.

W. Paryatmo, Turbin Air. Universitas Pancasila , 2007.

W. Arismunandar, “Penggerak Mula Turbin ITB.” Bandung, 2004.

C. Abeykoon and T. Hantsch, “Design and analysis of a Kaplan turbine runner wheel,” Proc. 3rd World Congr. Mech. Chem. Mater. Eng., Rome, Italy, p. 1â, 2017.

H. Akin et al., “A CFD aided hydraulic turbine design methodology applied to Francis turbines,” in 4th International Conference on Power Engineering, Energy and Electrical Drives, IEEE, 2013, pp. 694–699.

M. M. Nunes, R. C. F. Mendes, T. F. Oliveira, and A. C. P. Brasil Junior, “An experimental study on the diffuser-enhanced propeller hydrokinetic turbines,” Renew Energy, vol. 133, pp. 840–848, Apr. 2019, doi: 10.1016/j.renene.2018.10.056.

W.-Q. Wang, R. Yin, and Y. Yan, “Design and prediction hydrodynamic performance of horizontal axis micro-hydrokinetic river turbine,” Renew Energy, vol. 133, pp. 91–102, Apr. 2019, doi: 10.1016/j.renene.2018.09.106.

A. Ghimire, D. Dahal, A. Kayastha, S. Chitrakar, B. S. Thapa, and H. P. Neopane, “Design of Francis turbine for micro hydropower applications,” J Phys Conf Ser, vol. 1608, no. 1, p. 012019, Aug. 2020, doi: 10.1088/1742-6596/1608/1/012019.

C. Abeykoon and T. Hantsch, “Design and Analysis of a Kaplan Turbine Runner Wheel,” Jun. 2017. doi: 10.11159/htff17.151.

H. Akin et al., “A CFD aided hydraulic turbine design methodology applied to Francis turbines,” in 4th International Conference on Power Engineering, Energy and Electrical Drives, 2013, pp. 694–699. doi: 10.1109/PowerEng.2013.6635694.

D. F, Turbin Pompa dan Kompressor. Erlangga, 1997.

H. Lomax, T. H. Pulliam, D. W. Zingg, and T. A. Kowalewski, “Fundamentals of computational fluid dynamics,” Appl. Mech. Rev., vol. 55, no. 4, pp. B61–B61, 2002.

M. Tabatabaian, COMSOL5 for Engineers. Mercury learning and information, 2015.

I. Samora, V. Hasmatuchi, C. Münch-Alligné, M. J. Franca, A. J. Schleiss, and H. M. Ramos, “Energy production with a tubular propeller turbine,” in IOP Conference Series: Earth and Environmental Science, Nov. 2016, p. 102001. doi: 10.1088/1755-1315/49/10/102001.

Pribadyo, H. Hadiyanto, and J. Jamari, “Study of low head turbine propellers axial flow for use of micro-hydropower plant (MHP) in Aceh, Indonesia,” J Phys Conf Ser, vol. 1524, no. 1, p. 012019, Apr. 2020, doi: 10.1088/1742-6596/1524/1/012019.




DOI: http://dx.doi.org/10.30811/jpl.v22i2.4233

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .

 

Alamat Surat :

Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia