Weight optimization of 200 mm diameter rocket motor tube using finite element method

Lasinta Ari Nendra Wibawa, Alit Daryana, Parid Saparudin, Wan Dedy Fitrah Indrayana, Handriyana Handriyana, Asep Diana, Toris Sobirin

Abstract


The lightweight design of the rocket motor tube is a critical requirement for enhancing the rocket's flight performance. This study assesses the impact of wall thickness, cap thickness, and fillet radius on structural strength and the optimization of rocket motor tube weight using the finite element method with the assistance of Ansys software. A total of 12 finite element model variations, utilizing Aluminium 6061-T6, were developed and subjected to a uniform internal operating pressure load of 10 MPa. The design includes wall thickness variations of 8 and 10 mm, cap thickness options of 25 and 30 mm, and fillet radius dimensions of 20, 25, and 30 mm, allowing for a comprehensive comparison to achieve the required minimum safety factor while minimizing structural weight. The research concludes that increasing the fillet radius is a more recommended approach compared to increasing wall thickness and cap thickness. The results indicate that Model 9, with wall thickness, cap thickness, and fillet radius dimensions of 10 mm, 25 mm, and 30 mm, respectively, is the optimal choice due to its lightweight construction.


Keywords


finite element method, rocket motor tube, stress analysis, thin and thick-walled cylinder, weight optimization

Full Text:

PDF

References


L. A. N. Wibawa, K. Diharjo, W. W. Raharjo, and B. H. Jihad, “Stress Analysis of Thick-Walled Cylinder for Rocket Motor Case under Internal Pressure,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 70, no. 2, pp. 106–115, 2020.

F. H. Reema et al., “Theoretical Aspects on Design and Performance Characteristics for Solid Rocket Motor,” Int. J. All Res. Educ. Sci. Methods, vol. 10, no. 2, pp. 2455–6211, 2022.

L. A. N. Wibawa and Tuswan, “Lightweight optimization design of thin-walled cylindrical rocket motor tube using FEA,” AIP Conf. Proc., vol. 2590, no. May, 2023.

L. A. N. Wibawa and Tuswan, “Effect of cylinder length on the ratio of safety factor and weight of rocket motor tube using thin-walled cylinder,” AIP Conf. Proc., vol. 2590, no. May, 2023.

S. Setiadi, B. Wicaksono, K. Kurdianto, and B. H. Jihad, “The Data Acquisition Role on Static Test for Validation of RX 320 Rocket Motor Design,” Spektra J. Fis. dan Apl., vol. 6, no. 1, pp. 9–18, 2021.

K. F. Foster et al., “Design and integration of a high-powered model rocket – I,” AIAA Scitech 2020 Forum, vol. 1 PartF, no. January, pp. 1–11, 2020.

V. Sella et al., “Development of a nytrox-paraffin hybrid rocket engine,” AIAA Propuls. Energy 2020 Forum, pp. 1–29, 2020.

J. Lee, T. S. Roh, H. Huh, and H. J. Lee, “Performance Analysis and Mass Estimation of a Small-Sized Liquid Rocket Engine with Electric-Pump Cycle,” Int. J. Aeronaut. Sp. Sci., vol. 22, no. 1, pp. 94–107, 2021.

Z.-B. Shen, L. Zhang, and Y.-F. Li, “Structural integrity analysis and experimental investigation for solid rocket motor grain subjected to low temperature ignition,” MATEC Web Conf., vol. 293, no. 201 9, p. 04005, 2019.

J. J. Hansen et al., “Student design of a bipropellant liquid rocket engine and associated infrastructure,” AIAA Propuls. Energy 2020 Forum, pp. 1–36, 2020.

Setiadi, B. Wicaksono, A. Riyadl, B. H. Jihad, and A. Apriyanto, Analytical Calculation, Numerical and Hydrostatic Test as a Validation of Material Strength of the New RX-450 Rocket Motor Tube. Springer Singapore, 2020.

V. Ramanjaneyulu, V. Balakrishna Murthy, R. Chandra Mohan, and C. Naga Raju, “Analysis of Composite Rocket Motor Case using Finite Element Method,” Mater. Today Proc., vol. 5, no. 2, pp. 4920–4929, 2018.

B. Niharika and B. B. Varma, “Design and Analysis of Composite Rocket Motor Casing,” IOP Conf. Ser. Mater. Sci. Eng., vol. 455, no. 1, 2018.

M. A. Muhammad, Z. Salleh, A. H. Abdul Hamid, M. J. Sujana, and K. Kamaludin, “Finite Element Analysis for Rocket Motor Case Under Internal Pressure and Thermal Loads,” J. Appl. Eng. Des. Simul., vol. 2, no. 2, pp. 11–21, 2022.

L. A. N. Wibawa, “Effect of Fillet Radius of UAV Main Landing Gear on Static Stress and Fatigue Life using Finite Element Method,” J. Phys. Conf. Ser., vol. 1811, no. 1, 2021.

L. A. N. Wibawa, “Effect of Bolt Hole Size on Static Stress and Fatigue Life of UAV Main Landing Gear Using Numerical Simulation,” J. Phys. Conf. Ser., vol. 1811, no. 1, 2021.

A. F. Mohamed, “Finite Element Analysis for Stresses in Thin-Walled Pressurized Steel Cylinders,” Int. J. Sci. Eng. Res., vol. 9, no. 3, pp. 201–204, 2018.

L. A. N. Wibawa, “Numerical Study of The Effect of Wall Thickness and Internal Pressure on Von Mises Stress and Safety Factor of Thin-Walled Cylinder for Rocket Motor Case,” JST (Jurnal Sains dan Teknol., vol. 9, no. 1, pp. 30–38, 2020.

L. A. N. Wibawa, K. Diharjo, W. W. Raharjo, and B. H. Jihad, “Pengaruh Ketebalan Cap dan Tekanan Internal terhadap Tegangan Von Mises Silinder Berdinding Tebal untuk Tabung Motor Roket,” Teknik, vol. 41, no. 2, pp. 111–118, 2020.

P. Sai Teja, B. Sudhakar, A. D. Dhass, R. Krishna, and M. Sreenivasan, “Numerical and experimental analysis of hydroxyl-terminated poly-butadiene solid rocket motor by using ANSYS,” Mater. Today Proc., vol. 33, pp. 308–314, 2020.

W. M. W. Mohamed, Z. Salleh, A. H. A. Hamid, M. A. Muhammad, and N. A. Salleh, “Thermal Analysis on Solid Rocket Motor Casing,” Int. Trans. J. Eng. Manag. Appl. Sci. Technol., vol. 12, no. 9, pp. 1–13, 2021.

L. A. N. Wibawa, K. Diharjo, W. Raharjo, and B. H. Jihad, “The Effect of Fillet Radius and Length of The Thick-Walled Cylinder on Von Mises Stress and Safety Factor for Rocket Motor Case,” AIP Conf. Proc., vol. 2296, no. 1, 2020.

L. Skinner, “Snubbing Theory and Calculations,” in Hydraulic Rig Technology and Operations, Gulf Professional Publishing, 2018, pp. 189–275.




DOI: http://dx.doi.org/10.30811/jpl.v21i6.4142

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia