Designing of Evaporator Length in Very Low Temperature Chest Freezer by using Environmentally Friendly Refrigerant R290

Kasni Sumeru, Ridwan Nugraha, Apip Badarudin, Luga Martin Simbolon, Mohamad Firdaus bin Sukri, Nani Yuningsih

Abstract


Chest freezers generally use R600a or R134a as working fluids. When using R600a, the minimum cabin temperature is only -10oC, whereas when using R134a, it can reach -25oC. The purpose of this study is to calculate the evaporator length of a chest freezer that uses R290 as a refrigerant so that its cabin temperature can reach below 35 oC, lower than the cabin temperature of a typical chest freezer. Calculation of the evaporator pipe length is done using the forced convection heat transfer equation to calculate the heat transfer coefficient inside the evaporator pipe and natural heat transfer to calculate the heat transfer coefficient outside the evaporator pipe.  Based on the calculations, the chest freezer has a compressor capacity of 200 W, an evaporator length of 3.57 m, and a diameter of 3/8 inch or 9.52 mm. The test results show that the temperature of the chest freezer cabin can reach -36oC in the 36th minute with a cooling capacity of 289 W, while the input power and COP are 198 watts and 1.46, respectively. Compared to R134a, the use of R290 is more advantageous. In addition to lower cabin temperatures, it is also much more environmentally friendly, because the GWP (global warming potential) value of R134a is much higher than that of R290. It means that the use of R290 as a working fluid in the chest freezer will significantly reduce emissions of gases that cause global warming.


Keywords


chest freezer, GWP, evaporator length, R134a, R290

Full Text:

PDF

References


S. Sawalha, S. Piscopiello, M. Karampour, L. Manickam, and J. Rogstam, “Field measurements of supermarket refrigeration systems. Part II: Analysis of HFC refrigeration systems and comparison to CO2 trans-critical,” Appl Therm Eng, vol. 111, pp. 170–182, Jan. 2017, doi: 10.1016/J.APPLTHERMALENG.2016.09.073.

Y. Cheng, J. Yu, G. Yan, and S. Qian, “Improving temperature uniformity in a large frost-free chest freezer,” International Journal of Refrigeration, vol. 141, pp. 12–20, Sep. 2022, doi: 10.1016/J.IJREFRIG.2022.05.021.

Á. R. Gardenghi, M. M. Campanini, J. Ferreira Lacerda, C. B. Tibiriçá, and L. Cabezas-Gómez, “A detailed study of the transient behavior of dual-skin chest-freezer with R290,” International Journal of Refrigeration, vol. 131, pp. 300–311, Nov. 2021, doi: 10.1016/J.IJREFRIG.2021.07.014.

C. P. Arora, Refrigeration and Air Conditioning, 3rd ed. Singapore: McGraw-Hill, 2009.

Y. H. Yau and Y. C. Foo, “Comparative study on evaporator heat transfer characteristics of revolving heat pipes filled with R134a, R22 and R410A,” International Communications in Heat and Mass Transfer, vol. 38, no. 2, pp. 202–211, Feb. 2011, doi: 10.1016/J.ICHEATMASSTRANSFER.2010.12.011.

A. G. Devecioʇlu and V. Oruç, “Characteristics of Some New Generation Refrigerants with Low GWP,” Energy Procedia, vol. 75, pp. 1452–1457, Aug. 2015, doi: 10.1016/J.EGYPRO.2015.07.258.

D. Sánchez, R. Cabello, R. Llopis, I. Arauzo, J. Catalán-Gil, and E. Torrella, “Energy performance evaluation of R1234yf, R1234ze(E), R600a, R290 and R152a as low-GWP R134a alternatives,” International Journal of Refrigeration, vol. 74, pp. 269–282, Feb. 2017, doi: 10.1016/J.IJREFRIG.2016.09.020.

A. Sethi, E. Vera Becerra, S. F. Yana Motta, and M. W. Spatz, “Low GWP R22 replacement for air conditioning in high ambient conditions,” International Journal of Refrigeration, vol. 57, pp. 26–34, Sep. 2015, doi: 10.1016/J.IJREFRIG.2015.05.013.

R. Cabello, D. Sánchez, R. Llopis, I. Arauzo, and E. Torrella, “Experimental comparison between R152a and R134a working in a refrigeration facility equipped with a hermetic compressor,” International Journal of Refrigeration, vol. 60, pp. 92–105, Dec. 2015, doi: 10.1016/J.IJREFRIG.2015.06.021.

Y. Heredia-Aricapa, J. M. Belman-Flores, A. Mota-Babiloni, J. Serrano-Arellano, and J. J. García-Pabón, “Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A,” International Journal of Refrigeration, vol. 111, pp. 113–123, Mar. 2020, doi: 10.1016/J.IJREFRIG.2019.11.012.

L. Zhang, Z. Yang, R. Zhai, Z. Lv, Y. Zhang, and Q. Deng, “Flammable performance and experimental evaluation of a new blend as R404A lower-GWP alternative,” International Journal of Refrigeration, vol. 135, pp. 113–120, Mar. 2022, doi: 10.1016/J.IJREFRIG.2021.12.019.

S. Kasera and S. C. Bhaduri, “Performance of R407C as an Alternate to R22: A Review,” Energy Procedia, vol. 109, pp. 4–10, Mar. 2017, doi: 10.1016/J.EGYPRO.2017.03.032.

Q. Ning, G. He, M. Fan, J. Xiong, and X. Li, “Flammable refrigerant leakage hazards control for split-type household air conditioners,” International Journal of Refrigeration, vol. 144, pp. 188–201, Dec. 2022, doi: 10.1016/J.IJREFRIG.2022.08.009.

W. Tang, G. He, W. Sun, S. Zhou, D. Cai, and Y. Zhu, “Assessment of leakage and risk reduction of R290 in a split type household air conditioner,” International Journal of Refrigeration, vol. 89, pp. 70–82, May 2018, doi: 10.1016/J.IJREFRIG.2018.03.012.

B. H. Shon, C. W. Jung, O. J. Kwon, C. K. Choi, and Y. Tae Kang, “Characteristics on condensation heat transfer and pressure drop for a low GWP refrigerant in brazed plate heat exchanger,” Int J Heat Mass Transf, vol. 122, pp. 1272–1282, Jul. 2018, doi: 10.1016/J.IJHEATMASSTRANSFER.2018.02.077.

R. Llopis, E. Torrella, R. Cabello, and D. Sánchez, “HCFC-22 replacement with drop-in and retrofit HFC refrigerants in a two-stage refrigeration plant for low temperature,” International Journal of Refrigeration, vol. 35, no. 4, pp. 810–816, Jun. 2012, doi: 10.1016/J.IJREFRIG.2012.01.001.

B. Nowak, P. Życzkowski, and R. Łuczak, “Functional Dependence of Thermodynamic and Thermokinetic Parameters of Refrigerants Used in Mine Air Refrigerators. Part 1 – Refrigerant R407C,” Archives of Mining Sciences, no. No 1, 2017, doi: 10.1515/amsc-2017-0005.

M. Petersen and S. Kujak, “Review of Lower GWP Refrigerants For Retrofitting R-410A Applications Review of Lower GWP Refrigerants For Retrofitting R-410A Applications,” in The 19th International Refrigeration and Air Conditioning, purdue: Purdue University, 2022, pp. 2115,page1-2115,page10.

K. Sumeru, M. Markus, N. F. Pratama, R. Muliawan, and Y. P. Hikmat, “Metode Praktis Perancangan Panjang Pipa Evaporator pada Mini Freezer Bertemperatur Rendah Menggunakan Refrigeran R404A,” Jurnal Rekayasa Mesin, vol. 18, no. 1, p. 9, 2023, doi: 10.32497/jrm.v18i1.3878.

J. Sun et al., “COVID 19 vaccine distribution solution to the last mile challenge: Experimental and simulation studies of ultra-low temperature refrigeration system,” International Journal of Refrigeration, vol. 133, pp. 313–325, Jan. 2022, doi: 10.1016/J.IJREFRIG.2021.11.005.

A. Coulomb, D., Dupon, J.L., Pichard, “The Role of Refrigeration in the Global Economy,” 38th Note on Refrigeration Technologies., no. November, 2019, doi: 10.18462/IIF.NITEC38.06.2019.

R. Cabello, D. Sánchez, R. Llopis, A. Andreu-Nacher, and D. Calleja-Anta, “Energy impact of the Internal Heat Exchanger in a horizontal freezing cabinet. Experimental evaluation with the R404A low-GWP alternatives R454C, R455A, R468A, R290 and R1270,” International Journal of Refrigeration, vol. 137, pp. 22–33, May 2022, doi: 10.1016/J.IJREFRIG.2022.02.007.

J. P. Holman, Heat Transfer, 9th ed. Boston: McGraw-Hill, 2002.

E. W. Lemmon, M. L. Huber, and M. O. McLinden, “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1.” 2013. Accessed: Jul. 16, 2023. [Online]. Available: https://www.nist.gov/publications/nist-standard-reference-database-23-reference-fluid-thermodynamic-and-transport




DOI: http://dx.doi.org/10.30811/jpl.v21i5.4103

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia