Numerical Study On Characteristics Of The Backward-Facing Step Flow With Variations Of The Slope Angle Of The Step

james julian, Rizki Aldi Anggara, Fitri Wahyuni

Abstract


The phenomenon of flow separation plays a vital role in the industrial world. The backward-facing step (BFS) is a general form representing flow separation. This study investigates the influence of the slope angle of the step on BFS flow characteristics at various low Reynolds numbers. According to the CFD results, the flow separation phenomenon forms a circulation zone for each increase in Reynolds numbers. This phenomenon is a result of the sudden expansion of the channel geometry. The BFS with the slope angle of the step demonstrates that the increase in the recirculation zone can be minimized, thus appropriately delaying flow separation. The recirculation zone causes fluid flow to reverse direction, affecting fluid flow efficiency due to resulting pressure differences. Therefore, a BFS with the slope angle of the step exhibits a more efficient flow phenomenon by minimizing the recirculation zone.


Keywords


BFS, CFD, flow separation, phenomenon, recirculation zone

Full Text:

PDF

References


H. A. Mohammed, A. A. Al-aswadi, N. H. Shuaib, and R. Saidur, “Convective heat transfer and fluid flow study over a step using nanofluids: A review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 6, pp.2921–2939, 2011, doi: https://doi.org/10.1016/j.rser.2011.02.019.

H. U. RuYun, W. Liang, and F. U. Song, “Review of backward-facing step flow and separation reduction,” SCIENTIA SINICA Physica, Mechanica&Astronomica, vol. 45,no.12, p.124704, 2015, doi: https://doi.org/10.1360/SSPMA2015-00450-176.

P. M. Nadge and R. N. Govardhan, “High Reynolds number flow over a backward-facing step: structure of the mean separation bubble,” Exp Fluids, vol. 55, no. 1, p. 1657, 2014, doi: 10.1007/s00348-013-1657-5.

Z.-Y. Guo, D.-Y. Li, and X.-G. Liang, “Thermal effect on the recirculation zone in sudden-expansion gas flows,” Int J Heat Mass Transf, vol. 39, no. 13, pp.2619-2624,1996,doi: https://doi.org/10.1016/0017-9310(95)00371-1.

K. O’Malley, A. D. Fitt, T. V Jones, J. R. Ockendon, and P. Wilmott, “Models for high-Reynolds-number flow down a step,” J Fluid Mech, vol. 222, pp. 139–155, 1991,doi: DOI: 10.1017/S0022112091001039.

R. Ruisi, H. Zare-Behtash, K. Kontis, and R. Erfani, “Active flow control over a backward-facing step using plasma actuation,” Acta Astronaut, vol. 126, pp. 354–363,2016,doi: https://doi.org/10.1016/j.actaastro.2016.05.016.

Y. Rouizi, Y. Favennec, J. Ventura, and D. Petit, “Numerical Model Reduction of 2D Steady Incompressible Laminar Flows: Application on the Flow over a Backward-Facing Step,” J. Comput. Phys., vol. 228, no. 6, pp. 2239–2255, Apr. 2009, doi: 10.1016/j.jcp.2008.12.001.

E. Erturk, “Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions,” Comput Fluids, vol. 37, no. 6, pp. 633–655, 2008, doi: https://doi.org/10.1016/j.compfluid.2007.09.003.

E. Erturk, T. Corke, and C. Gokcol, “Numerical Solutions of 2-D Steady Incompressible Driven Cavity Flow at High Reynolds Numbers,” Int J Numer Methods Fluids, vol. 48, pp. 747–774, Jul. 2005, doi: 10.1002/fld.953.

V. Uruba, P. Jonáš, and O. Mazur, “Control of a channel-flow behind a backward-facing step by suction/blowing,” Int J Heat Fluid Flow, vol. 28, no. 4, pp. 665–672, 2007,doi: https://doi.org/10.1016/j.ijheatfluidflow.2007.04.002.

E. Montazer, H. Yarmand, E. Salami, M. R. Muhamad, S. N. Kazi, and A. Badarudin, “A brief review study of flow phenomena over a backward-facing step and its optimization,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 994–1005, 2018, doi: https://doi.org/10.1016/j.rser.2017.09.104.

B. Armaly, F. Durst, J. Pereira, and B. Schönung, “Experimental and Theoretical Investigation of Backward-Facing Step Flow,” J Fluid Mech, vol. 127, pp. 473–496, May 1983, doi: 10.1017/S0022112083002839.

J. Julian and R. F. Karim, “Flow control on a squareback model,” International Review of Aerospace Engineering, vol. 10, no. 4, pp. 230–239, 2017.

J. Julian, W. Iskandar, and F. Wahyuni, “Aerodynamics Improvement of NACA 0015 by Using Co-Flow Jet,” International Journal of Marine Engineering Innovation and Research, vol. 7, pp. 1479–2548, Mar. 2022, doi: 10.12962/j25481479.v7i4.14898.

J. Julian, R. Difitro, and P. Stefan, “The effect of plasma actuator placement on drag coefficient reduction of Ahmed body as an aerodynamic model,” International Journal of Technology, vol. 7, no. 2, pp. 306–313, 2016.

J. Julian, R. Difitro, and P. Stefan, “The effect of plasma actuator placement on drag coefficient reduction of Ahmed body as an aerodynamic model,” International Journal of Technology, vol. 7, no. 2, pp. 306–313, 2016.

Harinaldi, Budiarso, and J. Julian, “The effect of plasma actuator on the depreciation of the aerodynamic drag on box model,” in AIP Conference Proceedings, AIP Publishing LLC, 2016, p. 040004.

J. Julian, W. Iskandar, and F. Wahyuni, “COMPUTATIONAL FLUID DYNAMICS ANALYSIS BASED ON THE FLUID FLOW SEPARATION POINT ON THE UPPER SIDE OF THE NACA 0015 AIRFOIL WITH THE COEFFICIENT OF FRICTION,” Jurnal Media Mesin, vol. 23, no. 2.

J. Julian, W. Iskandar, and F. Wahyuni, “Effect of Single Slat and Double Slat on Aerodynamic Performance of NACA 4415,” 2022.

J. Julian, W. Iskandar, F. Wahyuni, and N. T. Bunga, “Aerodynamic Performance Improvement on NACA 4415 Airfoil by Using Cavity,”JurnalAsiimetrik: JurnalIlmiahRekayasa Dan Inovasi, vol. 5, no. 1, Jan. 2023, doi: 10.35814/asiimetrik.v5i1.4259.

J. Julian, W. Iskandar, F. Wahyuni, and N. T. Bunga, “Characterization of the Co-Flow Jet Effect as One of the Flow Control Devices,” JurnalAsiimetrik: JurnalIlmiahRekayasa&Inovasi, pp. 185–192, 2022.

F. C. Megawanto, Harinaldi, Budiarso, and J. Julian, “Numerical analysis of plasma actuator for drag reduction and lift enhancement on NACA 4415 airfoil,” in AIP Conference Proceedings, AIP Publishing LLC, 2018, p. 050001.

J. Julian, W. Iskandar, F. Wahyuni, A. Armansyah, and F. Ferdyanto, “Effect of Single Slat and Double Slat on Aerodynamic Performance of NACA 4415,” International Journal of Marine Engineering Innovation and Research, vol. 7, no. 2, 2022.

F. C. Megawanto, R. F. Karim, N. T. Bunga, and J. Julian, “Flow separation delay on NACA 4415 airfoil using plasma actuator effect,” International Review of Aerospace Engineering, vol. 12, no. 4, pp. 180–186, 2019.

F. C. Megawanto, R. F. Karim, N. T. Bunga, and J. Julian, “Flow separation delay on NACA 4415 airfoil using plasma actuator effect,” International Review of Aerospace Engineering, vol. 12, no. 4, pp. 180–186, 2019.

W. Iskandar, J. Julian, F. Wahyuni, F. Ferdyanto, H. Prabu, and F. Yulia, “Study of Airfoil Characteristics on NACA 4415 with Reynolds Number Variations,” International Review on Modelling and Simulations (IREMOS), vol. 15, p. 162, Feb. 2022, doi: 10.15866/iremos.v15i3.21684.

J. Julian, Harinaldi, Budiarso, C.-C. Wang, and M.-J. Chern, “Effect of plasma actuator in boundary layer on flat plate model with turbulent promoter,” Proc Inst Mech Eng G J Aerosp Eng, vol. 232, no. 16, pp. 3001–3010, 2018.

G. Biswas, M. Breuer, and F. Durst, “Backward-Facing Step Flows for Various Expansion Ratios at Low and Moderate Reynolds Numbers,” J Fluids Eng, vol. 126, no. 3, pp. 362–374, Jul. 2004, doi: 10.1115/1.1760532.

P. J. Roache, “Perspective: a method for uniform reporting of grid refinement studies,” 1994.

F. Danane, A. Boudiaf, O. Mahfoud, S.-E. Ouyahia, N. Labsi, and Y. K. Benkahla, “Effect of backward facing step shape on 3D mixed convection of Bingham fluid,” International Journal of Thermal Sciences, vol. 147, p. 106116, 2020, doi: https://doi.org/10.1016/j.ijthermalsci.2019.106116.




DOI: http://dx.doi.org/10.30811/jpl.v22i1.4052

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia