Prediction Modeling of Low Alloy Steel Based on Chemical Composition and Heat Treatment Using Artificial Neural Network
Abstract
The utilization of machine learning methods in modern material science enables the design of more efficient and innovative materials. This research aims to develop a machine learning model using the Artificial Neural Network (ANN) algorithm to predict the mechanical properties of low alloy steel. The dataset used consists of 15 input variables and 2 output variables, namely Yield Strength (YS) and Tensile Strength (TS). In this study, three ANN architectures were designed and their performance was compared using evaluation metrics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-squared. During the search for the best parameters for the ANN model, variations were made in the optimizer, learning rate, and batch size. The evaluation was conducted using cross-validation technique with k=10. The evaluation results indicate that the model with the best performance in predicting YS had MAE of 18.197, RMSE of 23.552, and R-squared of 0.969. For predicting TS, the model achieved MAE of 27, RMSE of 36.696, and R-squared of 0.907. The research results demonstrate that the ANN model can be used to predict the mechanical properties of low alloy steel based on alloy chemical composition and heat treatment temperature with reasonably high accuracy
Keywords
Full Text:
PDFReferences
I. Miletić, A. Ilić, R. R. Nikolić, R. Ulewicz, L. Ivanović, and N. Sczygiol, “Analysis of Selected Properties of Welded Joints of the HSLA Steels,” Materials, vol. 13, no. 6, p. 1301, Mar. 2020, doi: 10.3390/ma13061301.
D. Leni, F. Earnestly, R. Sumiati, A. Adriansyah, and Y. P. Kusuma, “Evaluasi sifat mekanik baja paduan rendah bedasarkan komposisi kimia dan suhu perlakuan panas menggunakan teknik exploratory data analysis (EDA),” Din. Tek. Mesin, vol. 13, no. 1, p. 74, Apr. 2023, doi: 10.29303/dtm.v13i1.624.
H. Pavan et al., “Influence of normalizing post carburizing treatment on microstructure, mechanical properties and fracture behavior of low alloy gear steels,” AIMS Mater. Sci., vol. 8, no. 5, pp. 836–851, 2021, doi: 10.3934/matersci.2021051.
A. A. Morini, M. J. Ribeiro, and D. Hotza, “Early-stage materials selection based on embodied energy and carbon footprint,” Mater. Des., vol. 178, p. 107861, Sep. 2019, doi: 10.1016/j.matdes.2019.107861.
M. Rafieazad, M. Ghaffari, A. Vahedi Nemani, and A. Nasiri, “Microstructural evolution and mechanical properties of a low-carbon low-alloy steel produced by wire arc additive manufacturing,” Int. J. Adv. Manuf. Technol., vol. 105, no. 5–6, pp. 2121–2134, Dec. 2019, doi: 10.1007/s00170-019-04393-8.
J. C. F. Jorge et al., “Microstructure characterization and its relationship with impact toughness of C–Mn and high strength low alloy steel weld metals – a review,” J. Mater. Res. Technol., vol. 10, pp. 471–501, Jan. 2021, doi: 10.1016/j.jmrt.2020.12.006.
I. K. Suarsana, I. N. Santhiarsa, and D. P. Negara, “Pengaruh Perlakuan Temperatur dan Media Pendinginan Terhadap Sifat Ketangguhan Baja AISI 3215,” J. METTEK, vol. 4, no. 1, p. 23, Apr. 2018, doi: 10.24843/METTEK.2018.v04.i01.p04.
K. Rajan, “Materials informatics,” Mater. Today, vol. 8, no. 10, pp. 38–45, Oct. 2005, doi: 10.1016/S1369-7021(05)71123-8.
S. R. Kalidindi and M. De Graef, “Materials Data Science: Current Status and Future Outlook,” Annu. Rev. Mater. Res., vol. 45, no. 1, pp. 171–193, Jul. 2015, doi: 10.1146/annurev-matsci-070214-020844.
A. Agrawal and A. Choudhary, “Perspective: Materials informatics and big data: Realization of the ‘fourth paradigm’ of science in materials science,” APL Mater., vol. 4, no. 5, p. 053208, May 2016, doi: 10.1063/1.4946894.
C. J. Regan, “Review: The Fourth Paradigm by Tony Hey, Stewart Tansley, and Kristin Tolle,” Interact. UCLA J. Educ. Inf. Stud., vol. 8, no. 1, 2012, doi: 10.5070/D481011836.
J. Wei et al., “Machine learning in materials science,” InfoMat, vol. 1, no. 3, pp. 338–358, Sep. 2019, doi: 10.1002/inf2.12028.
P.-Y. Chou, J.-T. Tsai, and J.-H. Chou, “Modeling and Optimizing Tensile Strength and Yield Point on a Steel Bar Using an Artificial Neural Network With Taguchi Particle Swarm Optimizer,” IEEE Access, vol. 4, pp. 585–593, 2016, doi: 10.1109/ACCESS.2016.2521162.
S. Lalam, P. K. Tiwari, S. Sahoo, and A. K. Dalal, “Online prediction and monitoring of mechanical properties of industrial galvanised steel coils using neural networks,” Ironmak. Steelmak., vol. 46, no. 1, pp. 89–96, Jan. 2019, doi: 10.1080/03019233.2017.1342424.
N. S. Reddy, J. Krishnaiah, S.-G. Hong, and J. S. Lee, “Modeling medium carbon steels by using artificial neural networks,” Mater. Sci. Eng. A, vol. 508, no. 1–2, pp. 93–105, May 2009, doi: 10.1016/j.msea.2008.12.022.
& S. Leni, D., R., “Perbandingan Alogaritma Machine Learning Untuk Prediksi Sifat Mekanik Pada Baja Paduan Rendah,” J. Rekayasa Mater. Manufaktur Dan Energi, vol. 5, no. 2, pp. 167–174, 2022, doi: DOI: https://doi.org/10.30596/rmme.v5i2.11407.
G. Mahalle, O. Salunke, N. Kotkunde, A. K. Gupta, and S. K. Singh, “Neural network modeling for anisotropic mechanical properties and work hardening behavior of Inconel 718 alloy at elevated temperatures,” J. Mater. Res. Technol., vol. 8, no. 2, pp. 2130–2140, Apr. 2019, doi: 10.1016/j.jmrt.2019.01.019.
J. P. Holman, Experimental methods for engineers, 8. ed. in McGraw Hill Series in Mechanical Engineering. New York: McGraw-Hill, 2012.
A. Agrawal, P. D. Deshpande, A. Cecen, G. P. Basavarsu, A. N. Choudhary, and S. R. Kalidindi, “Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters,” Integrating Mater. Manuf. Innov., vol. 3, no. 1, pp. 90–108, Dec. 2014, doi: 10.1186/2193-9772-3-8.
H. F. Altinbi̇Lek, H. Nar, S. Aksu, and Ü. Kizil, “Sensory Precipitation Forecast Using Artificial Neural Networks and Decision Trees,” J. Adv. Res. Nat. Appl. Sci., vol. 8, no. 2, pp. 309–321, Jun. 2022, doi: 10.28979/jarnas.984312.
Amir Ali, “Artificial Neural Network (ANN) with Practical Implementation.”
I. D. Jung et al., “Artificial intelligence for the prediction of tensile properties by using microstructural parameters in high strength steels,” Materialia, vol. 11, p. 100699, Jun. 2020, doi: 10.1016/j.mtla.2020.100699.
R. Mikut and M. Reischl, “Data mining tools,” WIREs Data Min. Knowl. Discov., vol. 1, no. 5, pp. 431–443, Sep. 2011, doi: 10.1002/widm.24.
A. Agrawal and A. Choudhary, “An online tool for predicting fatigue strength of steel alloys based on ensemble data mining,” Int. J. Fatigue, vol. 113, pp. 389–400, Aug. 2018, doi: 10.1016/j.ijfatigue.2018.04.017.
Z. Wang, W. Hui, Z. Chen, Y. Zhang, and X. Zhao, “Effect of vanadium on microstructure and mechanical properties of bainitic forging steel,” Mater. Sci. Eng. A, vol. 771, p. 138653, Jan. 2020, doi: 10.1016/j.msea.2019.138653.
V. M. Goritskii, G. R. Shneiderov, and I. A. Guseva, “Effect of Chemical Composition and Structure on Mechanical Properties of Low-Alloy Weldable Steels After Thermomechanical Treatment,” Metallurgist, vol. 60, no. 5–6, pp. 511–518, Sep. 2016, doi: 10.1007/s11015-016-0323-6.
E. Colin García, A. Cruz Ramírez, G. Reyes Castellanos, J. F. Chávez Alcalá, J. Téllez Ramírez, and A. Magaña Hernández, “Heat Treatment Evaluation for the Camshafts Production of ADI Low Alloyed with Vanadium,” Metals, vol. 11, no. 7, p. 1036, Jun. 2021, doi: 10.3390/met11071036.
A. R. H. Far, S. H. M. Anijdan, and S. M. Abbasi, “The effect of increasing Cu and Ni on a significant enhancement of mechanical properties of high strength low alloy, low carbon steels of HSLA-100 type,” Mater. Sci. Eng. A, vol. 746, pp. 384–393, Feb. 2019, doi: 10.1016/j.msea.2019.01.025.
X. Wang, C. H. Zhang, X. Cui, S. Zhang, J. Chen, and J. B. Zhang, “Microstructure and mechanical behavior of additive manufactured Cr–Ni–V low alloy steel in different heat treatment,” Vacuum, vol. 175, p. 109216, May 2020, doi: 10.1016/j.vacuum.2020.109216.
A. Mankodi, A. Bhatt, and B. Chaudhury, “Evaluation of Neural Network Models for Performance Prediction of Scientific Applications,” in 2020 IEEE REGION 10 CONFERENCE (TENCON), Osaka, Japan: IEEE, Nov. 2020, pp. 426–431. doi: 10.1109/TENCON50793.2020.9293788.
D.-G. Hong, S.-H. Kwon, and C.-H. Yim, “Hot Ductility Prediction Model of Cast Steel with Low-Temperature Transformed Structure during Continuous Casting,” Materials, vol. 15, no. 10, p. 3513, May 2022, doi: 10.3390/ma15103513.
Leni, D., “Pemilihan Algoritma Machine Learning Yang Optimal Untuk Prediksi Sifat Mekanik Aluminium.,” J. Engine Energi Manufaktur Dan Mater., vol. 7, no. 1, pp. 35–44.
DOI: http://dx.doi.org/10.30811/jpl.v21i5.3896
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .
Alamat Surat :
Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia