Optimization of Infill Density, Layer Height, and Shell Thickness to Achieve Maximum Bending Strength and Minimum Printing Time of PLA 3D Printed Part

The Jaya Suteja, Rico Handoko, Arum Soesanti

Abstract


3D printing has advantages in making customized products, such as leg prosthetics. One of the required properties of 3D-printed leg prosthetics is their resistance to bending stress. Based on the literature review, the influence of the interaction among layer height, infill density, and shell thickness on the bending strength and printing time has not yet been investigated or optimized. This study aims to investigate the effect and optimize the layer height, infill density, and shell thickness to achieve the maximum bending strength and minimum printing time of a Polylactic Acid 3D printed part. This research studies three independent variables: layer height, infill density, and shell thickness. The independent variables of this research are bending strength and printing time. The bending test is conducted according to the ISO 178 standard. The printed specimen is tested using the bending testing machine Tarno Grocki to measure the maximum bending load the specimen can hold. The printing time is measured by using a stopwatch. The Response Surface Method is used as an optimization method to find the value of the maximum bending strength and minimum printing time of the 3D printed part. The optimum responses are achieved using 40 % infill density, 0.3 mm layer height, and 1.6 mm shell thickness. The maximum bending strength is 118. 5129 MPa and the minimum printing time is 11.1867 minutes.


Keywords


Optimization, 3D printing, bending strength, printing time

Full Text:

PDF

References


C. Abeykoon, P. Sri-Amphorn, and A. Fernando, “Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures,” Int. J. Light. Mater. Manuf., vol. 3, no. 3, pp. 284–297, 2020, doi: 10.1016/j.ijlmm.2020.03.003.

J. Yap, “Low-cost 3D-printable prosthetic foot,” in 3rd European Conference on Design4Health, 2015, no. July.

S. R. Rajpurohit and H. K. Dave, “Flexural strength of fused filament fabricated (FFF) PLA parts on an open-source 3D printer,” Adv. Manuf., vol. 6, no. 4, pp. 430–441, 2018, doi: 10.1007/s40436-018-0237-6.

A. Chalgham and A. Ehrmann, “Mechanical Properties of FDM Printed PLA Parts before and after Thermal Treatment,” Polymers (Basel)., vol. 13, no. 8, 2021, doi: 10.3390/polym13081239.

M. Darsin, R. L. Amir, H. Sutjahjono, M. E. Ramadhan, and Y. Hermawan, “The Effect of Nozzle Temperature , Layer Height, and Infill Pattern on Dimensional Accuracy and Flexural Strength of 3D Printed Cu-PLA Filaments,” Adv. Eng. Sci., vol. 54, no. 3, pp. 1437–1449, 2022.

G. Atakok, M. Kam, and H. B. Koc, “Tensile, three-point bending and impact strength of 3D printed parts using PLA and recycled PLA filaments: A statistical investigation,” J. Mater. Res. Technol., vol. 18, pp. 1542–1554, 2022, doi: 10.1016/j.jmrt.2022.03.013.

C. Lubombo and M. A. Huneault, “Effect of infill patterns on the mechanical performance of lightweight 3D-printed cellular PLA parts,” Mater. Today Commun., vol. 17, pp. 214–228, 2018, doi: 10.1016/j.mtcomm.2018.09.017.

A. Chadha, M. I. Ul Haq, A. Raina, R. R. Singh, N. B. Penumarti, and M. S. Bishnoi, “Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts,” World J. Eng., vol. 16, no. 4, pp. 550–559, 2019, doi: 10.1108/WJE-09-2018-0329.

W. Kolodziej, A., Zur, P., & Borek, “Influence of 3D-printing Parameters on Mechanical Properties of PLA defined in the Static Bending Test,” Eur. J. Eng. Sci. Technol., 2019, doi: 10.33422/ejest.2019.01.52.

M. D. Zandi, R. Jerez-Mesa, J. Lluma-Fuentes, J. J. Roa, and J. A. Travieso-Rodriguez, “Experimental analysis of manufacturing parameters’ effect on the flexural properties of wood-PLA composite parts built through FFF,” Int. J. Adv. Manuf. Technol., vol. 106, no. 9–10, pp. 3985–3998, 2020, doi: 10.1007/s00170-019-04907-4.

S. Kesavarma, C. K. Kong, M. Samykano, K. Kadirgama, and A. K. Pandey, “Bending properties of 3D printed coconut wood-PLA composite,” IOP Conf. Ser. Mater. Sci. Eng., vol. 736, no. 5, 2020, doi: 10.1088/1757-899X/736/5/052031.

H. Chokshi, D. B. Shah, K. M. Patel, and S. J. Joshi, “Experimental investigations of process parameters on mechanical properties for PLA during processing in FDM,” Adv. Mater. Process. Technol., vol. 8, no. sup2, pp. 696–709, 2022, doi: 10.1080/2374068X.2021.1946756.

K. Balamurugan, M. Venkata Pavan, S. K. Ahamad Ali, and G. Kalusuraman, “Compression and flexural study on PLA-Cu composite filament using FDM,” Mater. Today Proc., vol. 44, pp. 1687–1691, 2021, doi: 10.1016/j.matpr.2020.11.858.

D. Koske and A. Ehrmann, “Infill Designs for 3D-Printed Shape-Memory Objects,” Technologies, vol. 9, no. 2, 2021, doi: 10.3390/technologies9020029.

B. Aloyaydi, S. Sivasankaran, and A. Mustafa, “Investigation of infill-patterns on mechanical response of 3D printed poly-lactic-acid,” Polym. Test., vol. 87, no. April, p. 106557, 2020, doi: 10.1016/j.polymertesting.2020.106557.

N. Ayrilmis, M. Kariz, J. H. Kwon, and M. Kitek Kuzman, “Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials,” Int. J. Adv. Manuf. Technol., vol. 102, no. 5–8, pp. 2195–2200, 2019, doi: 10.1007/s00170-019-03299-9.

T. J. Suteja and A. Soesanti, “Mechanical Properties of 3D Printed Polylactic Acid Product for Various Infill Design Parameters: A Review,” J. Phys. Conf. Ser., vol. 1569, no. 4, 2020, doi: 10.1088/1742-6596/1569/4/042010.

T. A.E, R. L, E. R.V, and B. D.K, “Optimization of 3D-Printer Process Parameters for Improving Quality of Polylactic Acid Printed Part,” Int. J. Eng. Technol., vol. 9, no. 2, pp. 589–600, 2017, doi: 10.21817/ijet/2017/v9i2/170902044.

N. H. Tho, T. C. Minh, and N. P. Tai, “The effect of infill pattern, infill density, printing speed and temperature on the additive manufacturing process based on the FDM technology for the hook-shaped components,” J. Polimesin, vol. 18, no. 1, pp. 1–6, 2020.

D. C. Montgomery, Design And Analysis Of Experiments. 2001.

I. Standard, “Plastics—Determination of flexural properties,” ISO Geneva, Switz., 2019.




DOI: http://dx.doi.org/10.30811/jpl.v21i5.3883

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .

 

Alamat Surat :

Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia