Analysis of liquid rocket propellant in nitroglycerin injector reactors

maryono maryono, Muhammad Akhlis Rizza

Abstract


The propulsion of the rocket is due to the thrust resulting from the combustion rate. The propellant energy can be increased by increasing the fuel pressure and temperature of the propellant. Increasing the pressure and temperature of the propellant will increase its combustion rate and the operating conditions of the rocket motor. The most effective liquid propellant used is Nitroglycerin (NG). Nitroglycerin was prepared using the glycerol nitration method with the principle of an injector-based reactor. Therefore, in this research, nitroglycerin was made using the Injector Reactor method with variations in flow rate and injection volume. The results showed that the effect of variations in flow rate and solution volume on the synthesis of nitroglycerin caused a change in solution temperature. Flow rate is closely related to the volume of solution used. The higher the temperature produced, the more heat energy will increase so that the pressure and combustion rate of the propellant increase. The most optimum results use a flow rate of 200 µm/s and a solution volume of 6 ml of glycerin, nitric acid, and sulfuric acid each with a temperature of 37.6oC.


Keywords


Glycerin Nitration, Injector, Nitroglycerin, Reactor, Rocket Liquid Propellant, Temperature

Full Text:

PDF

References


J. Thongsri, K. Srathonghuam, and A. Boonpan, “Gas Flow and Ablation of 122 mm Supersonic Rocket Nozzle Investigated by Conjugate Heat Transfer Analysis,” Processes, vol. 10, no. 9, 2022, doi: 10.3390/pr10091823.

C. Griego, N. Yilmaz, and A. Atmanli, “Analysis of aluminum particle combustion in a downward burning solid rocket propellant,” Fuel, vol. 237, no. October 2018, pp. 405–412, 2019, doi: 10.1016/j.fuel.2018.10.016.

V. K. Bhosale, S. Karnik, and P. S. Kulkarni, “Ignition study of amine borane/cyanoborane based green hypergolic fuels,” Combust. Flame, vol. 210, pp. 1–8, 2019, doi: 10.1016/j.combustflame.2019.08.015.

S. Soller et al., “Design and Testing of Liquid Propellant Injectors for Additive Manufacturing,” Eucass, no. Eucass, 2017.

M. Son, K. Radhakrishnan, J. Koo, O. C. Kwon, and H. D. Kim, “Design procedure of a movable pintle injector for liquid rocket engines,” J. Propuls. Power, vol. 33, no. 4, pp. 858–869, 2017, doi: 10.2514/1.B36301.

W. Zhang, X. Qi, S. Huang, J. Li, and Q. Zhang, “Super-base-derived hypergolic ionic fuels with remarkably improved thermal stability,” J. Mater. Chem. A, vol. 3, no. 41, pp. 20664–20672, 2015, doi: 10.1039/c5ta05559h.

T. Liu et al., “Exploiting hydrophobic borohydride-rich ionic liquids as faster-igniting rocket fuels,” Chem. Commun., vol. 52, no. 10, pp. 2031–2034, 2016, doi: 10.1039/c5cc09737a.

A. E. S. Nosseir, A. Cervone, and A. Pasini, “Review of state-of-the-art green monopropellants: For propulsion systems analysts and designers,” Aerospace, vol. 8, no. 1, pp. 1–21, 2021, doi: 10.3390/aerospace8010020.

Q. Zhang and J. M. Shreeve, “Energetic Ionic Liquids as Explosives and Propellant Fuels : A New Journey of Ionic Liquid Chemistry,” 2014, doi: 10.1021/cr500364t.

S. Schneider, T. Hawkins, M. Rosander, G. Vaghjiani, S. Chambreau, and G. Drake, “Ionic Liquids as Hypergolic Fuels,” no. 11, pp. 2871–2872, 2008.

Z. Wang et al., “From heart drug to propellant fuels : Designing nitroglycerin-ionic liquid composite as green high-energy hypergolic fluids,” Combust. Flame, vol. 233, p. 111597, 2021, doi: 10.1016/j.combustflame.2021.111597.

P. D. McCrary et al., “Hypergolic ionic liquids to mill, suspend, and ignite boron nanoparticles,” Chem. Commun., vol. 48, no. 36, pp. 4311–4313, 2012, doi: 10.1039/c2cc30957b.

Y. Wang, S. Huang, W. Zhang, T. Liu, X. Qi, and Q. Zhang, “Nitrato-Functionalized Task-Specific Ionic Liquids as Attractive Hypergolic Rocket Fuels,” Chem. - A Eur. J., vol. 23, no. 51, pp. 12502–12509, 2017, doi: 10.1002/chem.201701804.

A. J. Mundahl et al., “Characterization of a novel ionic liquid monopropellant for multi-mode propulsion,” 53rd AIAA/SAE/ASEE Jt. Propuls. Conf. 2017, no. July, pp. 1–20, 2017, doi: 10.2514/6.2017-4756.

Y. Zhou, H. Gao, and J. M. Shreeve, “Dinitromethyl groups enliven energetic salts,” Energ. Mater. Front., vol. 1, no. 1, pp. 2–15, 2020, doi: 10.1016/j.enmf.2020.04.001.

Z. Yu et al., “Simulation for the migration of nitrate ester plasticizers in different liners contacting with propellant by molecular dynamics,” J. Energ. Mater., vol. 39, no. 1, pp. 74–84, 2021, doi: 10.1080/07370652.2020.1756987.

F. Jutz, J.-M. Andanson, and A. Baiker, “ChemInform Abstract: Ionic Liquids and Dense Carbon Dioxide: A Beneficial Biphasic System for Catalysis,” ChemInform, vol. 42, no. 21, p. no-no, 2011, doi: 10.1002/chin.201121239.

B. Ni and A. D. Headley, “Ionic-Liquid-Supported (ILS) catalysts for asymmetric organic synthesis,” Chem. - A Eur. J., vol. 16, no. 15, pp. 4426–4436, 2010, doi: 10.1002/chem.200902747.

Q. Zhang, S. Zhang, and Y. Deng, “Recent advances in ionic liquid catalysis,” Green Chem., vol. 13, no. 10, pp. 2619–2637, 2011, doi: 10.1039/c1gc15334j.

H. J. Maag and G. Klingenberg, “Gun propulsion concepts. Part II: Solid and liquid propellants,” Propellants, Explos. Pyrotech., vol. 21, no. 1, pp. 1–7, 1996, doi: 10.1002/prep.19960210102.

Z. P. Huang, H. Y. Nie, Y. Y. Zhang, L. M. Tan, H. L. Yin, and X. G. Ma, “Migration kinetics and mechanisms of plasticizers, stabilizers at interfaces of NEPE propellant/HTPB liner/EDPM insulation,” J. Hazard. Mater., vol. 229–230, pp. 251–257, 2012, doi: 10.1016/j.jhazmat.2012.05.103.

D. Venkatesan, M. Srinivasan, K. A. Reddy, and V. V. Pendse, “The migration of plasticizer in solid propellant grains,” Polym. Int., vol. 32, no. 4, pp. 395–399, 1993, doi: 10.1002/pi.4990320410.

D. A. Reese, L. J. Groven, and S. F. Son, “Formulation and characterization of a new nitroglycerin-free double base propellant,” Propellants, Explos. Pyrotech., vol. 39, no. 2, pp. 205–210, 2014, doi: 10.1002/prep.201300105.

R. J. Buszek et al., “Structures and Binding Energies of Nitrate Plasticizers DEGDN, TEGDN, and Nitroglycerine,” Propellants, Explos. Pyrotech., vol. 43, no. 2, pp. 115–121, 2018, doi: 10.1002/prep.201700203.

E. Astuti and A. Prasetya, “Optimum Operating Condition Of Glycerol Nitration,” ARPN J. Eng. Appl. Sci., vol. 11, no. 8, pp. 5203–5208, 2016.

S. Gayathri and S. Reshmi, “Nitrato Functionalized Polymers for High Energy Propellants and Explosives: Recent Advances,” Polym. Adv. Technol., vol. 28, no. 12, pp. 1539–1550, 2017, doi: 10.1002/pat.4039.

T. Urbanski, “Structure of Cellulose—Nitric Acid Knecht Compounds. I. Spectroscopic Examination,” Org. Chem., vol. XIII, no. 6, pp. 377–383, 1965, [Online]. Available: http://bcpw.bg.pw.edu.pl/Content/3747/bulletin_de_lacademie_polonaise_des_sciences_1965_nr6_s377.pdf.

R. K. Weaver, “The Changing World of Think Tanks,” PS Polit. Sci. Polit., vol. 22, no. 3, p. 563, 1989, doi: 10.2307/419623.

G. M. Walker, H. C. Zeringue, and D. J. Beebe, “Microenvironment design considerations for cellular scale studies,” Lab Chip, vol. 4, no. 2, pp. 91–97, 2004, doi: 10.1039/b311214d.

W. Blonski, A. M. Buchner, and G. R. Lichtenstein, “Inflammatory bowel disease therapy: Current state-of-the-art,” Curr. Opin. Gastroenterol., vol. 27, no. 4, pp. 346–357, 2011, doi: 10.1097/MOG.0b013e328347aef3.

S. Susilo, Gumono, and B. Irawan, “The Effect of Concentration Reactan to Mixing Nitroglycerin Using Microchannel Hydrodynamics Focusing,” J. Southwest Jiaotong Univ., vol. 17, no. 3, 2020.

T. Zeng, R. Yang, J. Li, W. Tang, and D. Li, “Thermal Decomposition Mechanism of Nitroglycerin by ReaxFF Reactive Molecular Dynamics Simulations,” Combust. Sci. Technol., vol. 193, no. 3, pp. 470–484, 2021, doi: 10.1080/00102202.2019.1661999.

L. Matteo, “Numerical Simulation of Nitrous Oxide Catalytic Decomposition,” 2017.

I. Kazakov et al., “Study of Nitration Equilibrium in The Glycerin-Aqueous Nitric Acid System,” Plenum Publ. Corp., no. 8, pp. 1729–1734, 1990.

Erna Astuti, Supranto, Rochmadi, and A. Prasetya, “A Thermodynamic Study of Parameters That Affect the Nitration of Glycerol with Nitric Acid,” J. Chem. Mol. Eng., vol. 9, no. 8, pp. 1010–1013, 2015.

W. Baraboo, “Applied Innovative Technologies for Characterization of Nitrocellulose and Nitroglycerine Contaminated Buildings and Soils,” U.S., 2008.

K. Lu and P. Lin, “Study on the stability of nitroglycerine spent acid,” Process Saf. Environ. Prot., vol. 7, no. 87, pp. 87–93, 2009, doi: 10.1016/j.psep.2008.08.004.

R. Wulandari, I. N. G. Wardana, and S. Wahyudi, “Reactive Mixing Behavior of the Nitration of Glycerin in a Stirred Vessel at Various Perturbation,” Appl. Mech. Mater., vol. 493, pp. 221–226, 2014, doi: 10.4028/www.scientific.net/AMM.493.221.

S. Guo, Q. Wang, J. Sun, X. Liao, and Z. Wang, “Study on the influence of moisture content on thermal stability of propellant,” J. Hazard. Mater., vol. 168, pp. 536–541, 2009, doi: 10.1016/j.jhazmat.2009.02.073.

K. Katoh, M. Nakahama, S. Kawaguchi, M. Arai, and Y. Wada, “The effects of conventional stabilizers and phenolic antioxidants on the thermal stability of nitroglycerine,” Sci. Tech. Energ. Mater., vol. 71, pp. 17–23, 2010.

A. Rifai and E. . Finalis, “Towards The Independence of The Propellant Industry for Munitions and Rocket,” J. Mater. dan Proses Manufaktur, vol. 6, no. 2, pp. 54–61, 2022.

H. Aref, “Order in chaos,” Macmillan Magazine, vol. 401, no. October, pp. 2–4, 1999.

F. . Moon, Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers. 1996.

P. K. Pandey, A. K. Sharma, and U. Gupta, “Blood Brain Barrier : An overview on Strategies in Drug Delivery , Realistic In Vitro Modelling and In Vivo Live Tracking,” J. Tissue Barriers, vol. 8370, no. December, 2015, doi: 10.1080/21688370.2015.1129476.

D. Liu, S. Cito, Y. Zhang, C. F. Wang, T. M. Sikanen, and H. A. Santos, “A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties,” Adv. Mater., vol. 27, no. 14, pp. 2298–2304, 2015, doi: 10.1002/adma.201405408.

S. Damiati, U. B. Kompella, S. A. Damiati, and R. Kodzius, “Microfluidic devices for drug delivery systems and drug screening,” Genes (Basel)., vol. 9, no. 2, 2018, doi: 10.3390/genes9020103.

S. Hamdallah et al., “Microfluidics for pharmaceutical nanoparticle fabrication: the truth and the myth,” Int. J. Pharm., vol. 584, pp. 12–26, 2020.

D. Zhang, H. Bi, B. Liu, and L. Qiao, “Detection of Pathogenic Microorganisms by Microfluidics Based Analytical Methods,” Anal. Chem., vol. 90, no. 9, pp. 5512–5520, 2018, doi: 10.1021/acs.analchem.8b00399.

V. S. Cabeza, “High and Efficient Production of Nanomaterials by Microfluidic Reactor Approaches,” Adv. Microfluid. - New Appl. Biol. Energy, Mater. Sci., 2016, doi: 10.5772/64347.

B. Yu, R. J. Lee, and L. J. Lee, “Microfluidic Methods for Production of Liposomes,” Methods Enzymol., vol. 465, no. C, pp. 129–141, 2009, doi: 10.1016/S0076-6879(09)65007-2.

P. Shrimal, G. Jadeja, and S. Patel, “A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach,” Chem. Eng. Res. Des., vol. 153, pp. 728–756, 2020, doi: 10.1016/j.cherd.2019.11.031.

J. Ma, S. M. Y. Lee, C. Yi, and C. W. Li, “Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications-a review,” Lab Chip, vol. 17, no. 2, pp. 209–226, 2017, doi: 10.1039/C6LC01049K.

S. Jiani, Z. Yuchao, C. Guangwen, and Y. Quan, “Investigation of Nitration Processes of iso -Octanol with Mixed Acid in,” Chinese J. Chem. Eng., vol. 17, no. 3, pp. 412–418, 2009.

P. Sengupta, K. Khanra, A. R. Chowdhury, and P. Datta, Lab-on-a-chip sensing devices for biomedical applications. Elsevier Ltd, 2019.

C. X. Zhao, L. He, S. Z. Qiao, and A. P. J. Middelberg, “Nanoparticle synthesis in microreactors,” Chem. Eng. Sci., vol. 66, no. 7, pp. 1463–1479, 2011, doi: 10.1016/j.ces.2010.08.039.

A. Singh, C. K. Malek, and S. K. Kulkarni, “Development in microreactor technology for nanoparticle synthesis,” Int. J. Nanosci., vol. 9, no. 1–2, pp. 93–112, 2010, doi: 10.1142/S0219581X10006557.

Y. Hu et al., “Facile High Throughput Wet-Chemical Synthesis Approach Using a Microfluidic-Based Composition and Temperature Controlling Platform,” Front. Chem., vol. 8, no. November, pp. 1–14, 2020, doi: 10.3389/fchem.2020.579828.

Y. Song, J. Hormes, and C. S. S. R. Kumar, “Microfluidic synthesis of nanomaterials,” Small, vol. 4, no. 6, pp. 698–711, 2008, doi: 10.1002/smll.200701029.

S. J. Haswell, R. J. Middleton, B. O. Sullivan, and V. Skelton, “The application of micro reactors to synthetic chemistry,” Chem. Commun., pp. 391–398, 2001, doi: 10.1039/b008496o.

G. Dummann, U. Quittmann, L. Gröschel, D. W. Agar, O. Wörz, and K. Morgenschweis, “The capillary-microreactor : a new reactor concept for the intensification of heat and mass transfer in liquid – liquid reactions,” Catal. Today, vol. 80, pp. 433–439, 2003, doi: 10.1016/S0920-5861(03)00056-7.

G. Panke, T. Schwalbe, W. Stirner, S. Taghavi-Moghadam, and G. Wille, “A Practical Approach of Continuous Processing to High Energetic Nitration Reactions in Microreactors,” Adv. online Publ., vol. 3, pp. 2827–2830, 2003, doi: 10.1055/s-2003-42491.

G. Chen, Q. Yuan, H. Li, and S. Li, “CO selective oxidation in a microchannel reactor for PEM fuel cell,” Chem. Eng. J., vol. 101, no. 1–3, pp. 101–106, 2004, doi: 10.1016/j.cej.2004.01.020.

J. R. Burns and C. Ramshaw, “Chemical Engineering Communications A Microreactor for the Nitration of Benzene and Toluene,” Chem. Eng. Commun., vol. 189, no. 12, pp. 1611–1628, 2002.

A. Muller, V. Cominos, V. Hessel, B. Horn, J. Sch, and A. Ziogas, “Fluidic bus system for chemical process engineering in the laboratory and for small-scale production,” Chem. Eng. J., vol. 107, pp. 205–214, 2005, doi: 10.1016/j.cej.2004.12.030.

B. A. A. Woezik and K. R. Westerterp, “The nitric acid oxidation of 2-octanol. A model reaction for multiple heterogeneous liquid-liquid reactions,” Chem. Eng. Process. Process Intensif., vol. 39, no. 6, pp. 521–537, 2000, doi: 10.1016/S0255-2701(00)00099-4.

K. Jähnisch, V. Hessel, H. Löwe, and M. Baerns, Chemistry in Microstructured Reactors, vol. 43, no. 4. 2004.

M. Brivio, W. Verboom, and D. N. Reinhoudt, “Miniaturized continuous flow reaction vessels : Influence on chemical reactions Miniaturized continuous flow reaction vessels : influence on chemical reactions,” R. Soc. Chem., vol. 6, no. June 2014, pp. 329–344, 2006, doi: 10.1039/b510856j.

L. Ducry and D. M. Roberge, “Controlled Autocatalytic Nitration of Phenol in a Microreactor,” Chem. Int., vol. 44, pp. 7972–7975, 2005, doi: 10.1002/anie.200502387.

L. Henke and H. Winterbauer, “A Modular Micro Reactor for Mixed Acid Nitration,” Chem. Eng. Technol, vol. 28, 2005, doi: 10.1002/ceat.200500096.

R. Halder, A. Lawal, and R. Damavarapu, “Nitration of toluene in a microreactor,” Catal. Today, vol. 125, pp. 74–80, 2007, doi: 10.1016/j.cattod.2007.04.002.

J. Manin, M. Bardi, L. M. Pickett, and R. Payri, “Boundary condition and fuel composition effects on injection processes of high-pressure sprays at the microscopic level,” Int. J. Multiph. Flow, vol. 83, pp. 267–278, 2016, doi: 10.1016/j.ijmultiphaseflow.2015.12.001.

V. V. Kulkarni, A. R. Kulkarni, P. A. Phawade, and J. P. Agrawal, “A study on the effect of additives on temperature sensitivity in composite propellants,” Propellants, Explos. Pyrotech., vol. 26, no. 3, pp. 125–129, 2001, doi: 10.1002/1521-4087(200106)26:3<125::AID-PREP125>3.0.CO;2-8.

B. N. D. Dipietro, C. Huh, and R. G. Cox, “The hydrodynamics of the spreading of one liquid on the surface of another,” J. Fluid Mech., vol. 84, pp. 529–549, 1978.

O. . Jensen, “The spreading of insoluble surfactant at the free surface of a deep fluid layer,” J. Fluid Mech., vol. 293, pp. 349–378, 1995.

J. . Scott, “Flow beneath a stagnant film on water : the Reynolds ridge,” J. Fluid Mech., vol. 116, pp. 283–296, 1982.

B. J. F. Harper, “The leading edge of an oil slick , soap film , or bubble stagnant cap in Stokes flow,” J. Fluid Mech., vol. 237, pp. 23–32, 1992.

J. L. Bull and J. B. Grotberg, “Surfactant spreading on thin viscous films : film thickness evolution and periodic wall stretch,” Exp. Fluids, vol. 34, pp. 1–15, 2003, doi: 10.1007/s00348-002-0447-2.

D. . Hoult, “Oil Spreading On the Sea,” Annu. Rev. Fluid Mech., vol. 341, no. 1, 1972.

M. Foda and C. Rg, “The spreading of thin liquid films on a water-air interface,” J. Fluid Mech., vol. 101, pp. 33–51, 1980.

A. D. Dussaud and S. M. Troian, “Dynamics of spontaneous spreading with evaporation on a deep fluid layer,” Am. Inst. Phys., vol. 10, pp. 23–38, 1998.

D. . Camp and J. . Berg, “The spreading of oil on water in the surface-tension regime,” J. Fluid Mech., vol. 184, pp. 445–462, 2012, doi: 10.1017/S0022112087002969.

D. . Suciu, O. Smigelschi, and E. Ruckenstein, “The Spreading of Liquids on Liquids,” J. Colloid Interface Sci., vol. 88, no. 4, pp. 520–528, 1970.

C. Huh, M. Inoue, and S. . Mason, “Uni . Directiona1 Spreading of One Liquid on T h e Surface of Another,” J. Chem. Eng., vol. 53, pp. 367–371, 1975.

X. G. Wu, Q. L. Yan, X. Guo, X. F. Qi, X. J. Li, and K. Q. Wang, “Combustion efficiency and pyrochemical properties of micron-sized metal particles as the components of modified double-base propellant,” Acta Astronaut., vol. 68, no. 7–8, pp. 1098–1112, 2011, doi: 10.1016/j.actaastro.2010.09.028.

H. Yaman, V. Çelik, and E. Degirmenci, “Experimental investigation of the factors affecting the burning rate of solid rocket propellants,” Fuel, vol. 115, pp. 794–803, 2014, doi: 10.1016/j.fuel.2013.05.033.

H. Hernandez and F. Research, “Clausius’ molecular sphere of action in crowded systems: Non-ideal gas behavior,” ForsChem Res. Reports, vol. 2, no. 11, pp. 1–16, 2017, doi: 10.13140/RG.2.2.36384.07681.

H. Hernandez and J. Aguirre, “Clausius’ Entropy change during molecular collisions,” ForsChem Res. Reports, vol. 045, no. 17, 2017, doi: 10.13140/RG.2.2.33917.97764.

H. Hernandez, “Collision Energy between Maxwell-Boltzmann Molecules: An Alternative Derivation of Arrhenius Equation,” ForsChem Res. Reports, vol. 4, no. 13, pp. 1–27, 2019, doi: 10.13140/RG.2.2.21596.33926.

H. Hernandez, “Probability Distributions of Molecular Kinetic Energy and Molecular Temperature,” ForsChem Res. Reports, vol. 4, no. 12, pp. 1–12, 2019, doi: 10.13140/RG.2.2.32880.00005.

H. Hernandez, “Molecular Free Path Statistical Distribution of Multicomponent Systems,” ForsChem Res. Reports, vol. 6, no. May, 2017, doi: 10.13140/RG.2.2.15605.58088.

H. Hernandez and F. Research, “Multicomponent Molecular Diffusion: A Mathematical Framework,” ForsChem Res. Reports, vol. 2, no. 9, pp. 1–22, 2017, doi: 10.13140/RG.2.2.14828.46724.

H. Hernandez, “Multicomponent Molecular Collision Kinetics: Rigorous Collision Time Distribution,” ForsChem Res. Reports, no. June, 2017, doi: 10.13140/RG.2.2.26218.31689.

H. Hernandez, “Multicomponent Molecular Collision Kinetics: Collision Rate and the Collision Frequency Paradox,” ForsChem Res. Reports, no. June, 2017, doi: 10.13140/RG.2.2.32983.27048.

H. Hernandez, “Clausius’ sphere of action for different intermolecular potentials,” ForsChem Res. Reports, vol. 2, no. 10, pp. 1–27, 2017, doi: 10.13140/RG.2.2.25246.23363.

S. R. Logan, “The origin and status of the arrhenius equation,” J. Chem. Educ., vol. 59, no. 4, pp. 279–281, 1982, doi: 10.1021/ed059p279.




DOI: http://dx.doi.org/10.30811/jpl.v21i3.3826

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .

 

Alamat Surat :

Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia