Experimental study on heat transfer characteristics on intersecting spiral finned tube type on heat exchanger

Muhammad Syahril, A. Syuhada, Hamdani Hamdani

Abstract


Compact heat exchangers play an important role in the industrial world, one of their applications being in thermal machines to dissipate heat generated during mechanical processes. To improve the performance of heat exchangers, many studies have been conducted, including the addition of spiral fins, and the spacing of these fins on the outer surface. This study examines the heat transfer characteristics of the outer surface. The heat exchanger is made of galvanized pipe with an inner diameter of 20 mm and an outer diameter of 22 mm. It has a passage length of 300 mm with a sharp turn of 81 mm. The spiral fins are made of aluminum, with a thickness of 0.3 mm, a spiral fin height of 10 mm, and a distance of 30 mm between the spiral fins. The cross-section of the spiral fins varies, including options without spiral fins, without spiral fins, without intersecting spiral fins, with intersecting 2 mm spiral fins, intersecting 5mm spiral fins, and intersecting 7mm spiral fins. Heat exchangers are supplied with hot at a constant inlet temperature of 80C and a flow rate of 0.57 kg/s. The fan operates at speeds of 3.59 m/s, 4.45 m/s and 5.07 m/s. The results show that the highest heat transfer rate and heat transfer coefficient are produced by the heat exchanger with a cross-section of 5 mm intersecting spiral fins, specifically 11,682.7 W and 604 W/m2.K.

Keywords


compact heat exchanger; heat transfer characteristics; intersecting spiral fins

Full Text:

PDF

References


J. Ning et al., “Experimental and numerical investigation of additively manufactured novel compact plate-fin heat exchanger,” Int J Heat Mass Transf, vol. 190, Jul. 2022, doi: 10.1016/j.ijheatmasstransfer.2022.122818.

G. Zilioet al., “Structural analysis of compact heat exchanger samples fabricated by additive manufacturing,” International Journal of Pressure Vessels and Piping, vol. 199, Oct. 2022, doi: 10.1016/j.ijpvp.2022.104714.

Y. Liu, Z. Zhuang, Y. Zhou, S. Zhao, D. Wang, and H. Liu, “Heat transfer performance analysis of seawater heat exchange pipelines in deep seawater closed cooling air conditioning system,” Appl Therm Eng, vol. 212, Jul. 2022, doi: 10.1016/j.applthermaleng.2022.118582.

M. Alteneiji, M. I. H. Ali, K. A. Khan, and R. K. A. Al-Rub, “Heat transfer effectiveness characteristics maps for additively manufactured TPMS compact heat exchangers,” Energy Storage and Saving, vol. 1, no. 3, pp. 153–161, Sep. 2022, doi: 10.1016/j.enss.2022.04.005.

P. Durán-Plazas, J. I. Minchaca-Mojica, and M. Picón-Núñez, “Selection of tube inserts in heat exchanger retrofit applications for increased energy recovery,” Cleaner Energy Systems, vol. 3, Dec. 2022, doi: 10.1016/j.cles.2022.100024.

D. Yadav, A. Kushwaha, D. Trivedee, and Z. Upadhyay, “A comprehensive experimental analysis for optimal flow configurations in a triple tube heat exchanger (TTHXr),” International Communications in Heat and Mass Transfer, vol. 138, Nov. 2022, doi: 10.1016/j.icheatmasstransfer.2022.106385.

“Fundamentals of Heat Exchanger Design - 2003 - Shah - Frontmatter”.

A. Royani, L. Nuraini, S. Prifiharni, G. Priyotomo, J. Triwardono, and H. Gunawan, “Studi Korosi Pada Baja Galvanis Setelah Ekspos Dilingkungan Perairan Sungai Cidaho-Sukabumi,” TEKNIK, vol. 40, no. 2, pp. 1–5, 2019, doi: 10.14710/teknik.v39n1.xxxxxx.

A. Syuhada, M. I. Maulana, and A. Adria, “Experimental Analysis of the Effect of Tube Pass Length on The Characteristics of Heat Transfer in U-Sharp Turned Channels,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal homepage, vol. 60, pp. 124–131, 2019, [Online]. Available:www.akademiabaru.com/arfmts.html

A. Syuhada, Z. Fuadi, and A. Munawir, “Kaji Karakteristik Perpindahan Panas Pengaruh Belokan Tajam Pada Penukar Kalor Tipe Tube,” Jurnal Mekanova, vol. 6, no. 2, 2020.

C. Abeykoon, “Compact heat exchangers – Design and optimization with CFD,” Int J Heat Mass Transf, vol. 146, Jan. 2020, doi: 10.1016/j.ijheatmasstransfer.2019.118766.

“Optimalisasi Rancangan Shell dan Tube Heat Exchangers”.

A. Syuhada, D. Afandi, and S. E. Sofyan, “Heat transfer analysis on the tube type heat exchanger with fin pitch variations,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd, Oct. 2020. doi: 10.1088/1757-899X/931/1/012017.

A. Syuhada, M. Hirota, H. Fujita, S. Araki, M. Yanagida, and T. Tanaka, “Heat (mass) transfer in serpentine ¯ow passage with rectangular cross-section.” [Online]. Available:www.elsevier.com/locate/enconman

F. Tahrour, H. Ahmad, H. Ameur, T. Saeed, H. Abu-Zinadah, and Y. Menni, “3D numerical study and comparison of thermal-flow performance of various annular finned-tube designs,” Journal of Ocean Engineering and Science, vol. 8, no. 3, pp. 294–307, Jun. 2023, doi: 10.1016/j.joes.2022.02.009.

X. Chen, J. Sheng, T. Lu, J. Wang, K. Zhang, and X. Chen, “Three-dimensional heat transfer coefficient distributions in horizontal tube falling film evaporation,” Appl Therm Eng, vol. 216, Nov. 2022, doi: 10.1016/j.applthermaleng.2022.119141.




DOI: http://dx.doi.org/10.30811/jpl.v22i5.3814

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .

 

Alamat Surat :

Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia