Effect of sintering temperature on crystal structure and physical properties of the Mg0,92Zn0,05C0,03 Alloy

Budiarto Budiarto, Susilo Susilo

Abstract


The effect of sintering temperature on the crystal structure and physical properties of the Mg0,92Zn0,05C0,03 alloy has been studied. Magnesium-based alloys are one of the alloys that have been used in industry, the health sector, and as biodegradable materials and biomaterials. The aim of this study was to determine the effect of temperature and sintering holding time on crystal size, dislocation density, microlattice strain, and yield strength, porosity and density of Mg0,92Zn0,05C0,03 alloy. The results of testing the crystal structure of the alloy Mg0,92Zn0,05C0,03 with an X-ray diffractometer showed several diffraction peaks consisting of the main phase α–Mg and a small part of the MgZn phase. Testing of Mg0,92Zn0,05C0,03 alloy after sintering with variations in temperature and 90 minutes holding time for crystal size showed that the higher the sintering temperature (425 0C to 575 0C) the crystal size value decreased significantly from 82.36 nm to 18.75 nm, and the dislocation density increased from 0.113 to 0.868 lines/mm2. For micro strain decreased from 0.015 to 0.0087. However, in the very small porosity test, the increase was from 29.8% to 31.9%. As well as for density (1.8 gr/cm3) and yield strength (274 MPa) there was no significant decrease of around 1.4%, but the synthesized Mg0,92Zn0,05C0,03 alloy fulfilled as a bone implant bio material.hhThe effect of sintering temperature on the crystal structure and physical properties of the Mg0,92Zn0,05C0,03 alloy has been studied. Magnesium-based alloys are one of the alloys that have been used in industry, the health sector, and as biodegradable materials and biomaterials. The aim of this study was to determine the effect of temperature and sintering holding time on crystal size, dislocation density, microlattice strain, and yield strength, porosity and density of Mg0,92Zn0,05C0,03 alloy. The results of testing the crystal structure of the alloy Mg0,92Zn0,05C0,03 with an X-ray diffractometer showed several diffraction peaks consisting of the main phase α–Mg and a small part of the MgZn phase. Testing of Mg0,92Zn0,05C0,03 alloy after sintering with variations in temperature and 90 minutes holding time for crystal size showed that the higher the sintering temperature (425 0C to 575 0C) the crystal size value decreased significantly from 82.36 nm to 18.75 nm, and the dislocation density increased from 0.113 to 0.868 lines/mm2. For micro strain decreased from 0.015 to 0.0087. However, in the very small porosity test, the increase was from 29.8% to 31.9%. As well as for density (1.8 gr/cm3) and yield strength (274 MPa) there was no significant decrease of around 1.4%, but the synthesized Mg0,92Zn0,05C0,03 alloy fulfilled as a bone implant bio material.

Keywords


Alloy Mg0,92Zn0,05C0,03, XRD, crystall size, powder metallurgy

Full Text:

PDF

References


R.Radha, D. Sreekanth, “Insight of magnesium alloys and composites for orthopedic implant applications – a review”, Journal of Magnesium and Alloys, 5(3), 286-312, (2017)

A. Sankalp, J.Curtin, B. Duffy, S. Jaiswal, “Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications”. Journal Materials Science and Engineering C, 68, 948-963. (2016)

B.P. Zhang, Wang, L. Geng, “Biomaterials – Physics and Chemistry” (p. 187), Rijeka: InTech, (2011)

Y.F. Zheng, X.N. Gu, F. Witte, “Biodegradable Metals”. Journal Material Science and Engineering F, 77, 1-34. (2014)

Y. Xin, K. Huo, H. Tao, G. Tang, P.K. Chu, “Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment”, Acta Biomaterialia, 4, 2008–2015.

Z.S.Seyedraoufi,S.H. Mirdamadi, “Synthesis, Microstructure and Mechanical Properties of Porous Mg-Zn Scaffolds”. J Mech Behav Biomed Mater., 21, 1-8. (2013)

D. Yang, W. Chen, J. Lu, Z. Hu, L.Wang, H. Wang, “Fabrication of Cellular Mg Alloy By Gas Release Reaction Via Powder Metallurgi Approach”. Metal Powder Report, 72 (2), 124-127. (2017)

S.M. Kayhan, A.Tahmasebifar, Z.Evis, M. Koc, M. “Effect of Manufacturing Conditions on the Mechanical and Corrosion Behavior of Microtectured AZ91D Prepared by Powder Metallurgy”. 4M/ICOMM Conference, DOI :10.13140/RG.2.1.3988.8803. (2015)

V.N. Pulagara, S. Saini, R.S. Dondapati, “Study of Manufacturing And Mechanical Properties of Mg – Foam Using Dolomite as the Blowing Agent: A Review”. IOP Conference, DOI:10.13140/RG.2.1.4606.2243. (2015)

S. Gonzalez, F. Pellicer, S. Surinach, M.D. Baro, J. Sort, “Biodegradable and Mechanical Integrity of Magnesium and Magnesium Alloys Suitable fot Implants”, (p. 316-317). InTech. dx.doi.org/10.5772/55584. (2013)

A.Kennedy, “Porous Metals and Metals Foams Made from Powder” (p. 38). InTech. Manufacturing Division, University of Nottingham, Nottingham. UK. 2012.

A.Erryani, F.P. Lestari, D. Annur, M.I. Amal, I.Kartika, “Microstructure and Mechanical Study of Mg Alloy Foam Based on Mg-Zn-CaCaCO System”. IOP Conf. Series; Materials Science and Engineering, 202, 012028. (2017).

Andi. “Pengaruh Variasi Komposisi Foaming Agent dan Temperatur Sintering Paduan MgZnCa dengan Foaming Agent CaCO untuk Aplikasi Implan Mampu Luruh”. Skripsi. Universitas Sultan Ageng Tirtayasa. (2017)

Y. Li, P.D. Hodgson, C. Wen, (2011). “The Effect of Calcium and Yttrium Additions on the Microstructure, Mechanical Properties and Biocompatibility of Biodegradable Magnesium Alloys”. Journal of Materials Science, 46(2), 365371. (2011)

P. Syafri, I.Isranuri, Suprianto. “Studi Pengaruh Magnesium terhadap Kekuatan Impak dan Mikrostruktur Alumunium Foam Menggunakan 3% CaCO sebagai Blowing Agent”. Jurnal eDinamis, 5(1), 23-28. (2013)

A.H.Yusop, A.A. Bakir, N.A. Shaharom, M.R.Abdul Kadir, H.Hermawan, “Porous Biodegradable Metals for Hard Tissue Scaffolds: A Review”. Int. J. Biomater. Article ID 641430, 10 pages, doi:10.1155/2012/641430. (2012)

E. Aprilia, Novantoro, F.P. Lestari, M.S. Dwijaya, I. Kartika “Sifat Mekanik Dan Struktur Mikro Paduan Magnesium Berpori Dengan Variasi Komosisi Agen Pengembang Dan Temperatur Sinter Untuk Implan Mampu Luruh”. LIPI Serpong - Universitas Sultan Ageng Tirtayasa. (2019)

Sugondo, Futichah. “Pengaruh Deformasi Pada Karakteristik Kristalit Dan Kekuatan Luluh Zircaloy-4”, PTEBN, BATAN Serpong. (2007)

Budiarto, E.B.O. Sihite, ”Analisa Pengaruh Waktu Dan Temperatur Sinter Terhadap Struktur Mikro, Gugus Fungsi Dan Struktur Kristal Pada Paduan LiNiO₂ Untuk Katoda Baterai Litium”, Laporan penelitian, Prodi TM,FT, UKI Jakarta. (2022)

I.B.Kurniawan, “Pengaruh Penambahan Zn dan Tekanan Kompaksi Tergadap, Struktur Mikro, Sifat Mekanik dan Laju Peluruhan Paduan Mg-Zn Untuk Aplikasi Orthopedic Devices Dengan Metode Metallurgy Serbuk”, Jurusan Teknik Material dan Metalurgi, Fakultas Teknologi Industri, ITS, Surabaya. (2017)

A. Hermanto, Y. Burhanuddin dan I. Sukmana, "Peluang dan Tantangan Aplikasi Baut Tulang Mampu Terdegradasi Berbasis Logam Magnesium," Dinamika Teknik Mesin, vol. 6, pp. 93-98. (2016)

H. Nurrohman, "Pengaruh Variasi Temperatur Dan Waktu Holding Sintering Terhadap Sifat Mekanik Dan Morfologi Biodegradable Material Mg-Fe-Zn Dengan Metode Metalurgi Serbuk Untuk Aplikasi Orthopedic Devices," Jurusan Teknik Material dan Metalurgi, Fakultas Teknologi Industri, ITS, Surabaya. (2016)

Shuhua Cai, et al. “Effect of Zn on Microstructure, Mechanical Properties and Corrosion Behaviour of Mg – Zn Alloys”. Materials Science and Engineering C 32 2570 – 2577. Elsevier, (2012).

Y. Zhou, A. Jiang, and J. Liu, "The effect of sintering temperature to the microstructure and properties of AZ91 magnesium alloy by powder metallurgy," Applied Mechanics and Materials, vol. 377, pp. 250-254. (2013)

L.Yang, T.Wang, C.Liu, et al. "Microstructures and mechanical properties of AZ31 magnesium alloys fabricated via vacuum hot-press sintering", Journal of Alloys and Compounds,870:159473.(2021)




DOI: http://dx.doi.org/10.30811/jpl.v21i3.3719

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia