The Influence of Annealing Temperature and Holding Time Near Glass Transition Temperature on the Tensile Strength of Fused Deposition Modeling Printed Polylactic Acid
Abstract
Thermal annealing can be implemented to improve the mechanical strength of a 3D printing object. The critical parameters of thermal annealing are temperature and holding time. Based on the literature review, the implemented annealing temperature affects the required holding time. As the use of a lower annealing temperature and holding time can reduce the required heat and increase the process efficiency, this research investigates the implementation of the annealing temperature near glass transition temperature with a short holding time. The aim of this research is to investigate the influence of the thermal annealing temperature range from 65 °C to 85 °C and the holding time from 45 minutes to 75 minutes on the Ultimate Tensile Strength of a Polylactic Acid part printed by using Fused Deposition Modelling. The experiment implemented a 32-factorial design methodology with two replications. The experiment results indicate that the thermal annealing slightly exceeding glass transition temperature facilitates higher interlayer diffusion of raster and layers and consequently increases the Ultimate Tensile Strength. Meanwhile, the holding time does not influence the Ultimate Tensile Strength of the annealed part as the holding time range cannot accomplish the maximum crystallization for the annealing temperature range between 65 °C to 85 °C.
Keywords
Full Text:
PDFReferences
T. J. Suteja and A. Soesanti, “Mechanical Properties of 3D Printed Polylactic Acid Product for Various Infill Design Parameters: A Review,” J. Phys. Conf. Ser., vol. 1569, no. 4, 2020, doi: 10.1088/1742-6596/1569/4/042010.
N. K. C, R. V. Pazhamannil, and G. P., “Effect of Process Parameters and Thermal Annealing on Mechanical Properties of Fused Filament Fabricated Specimens,” SSRN Electron. J., pp. 358–364, 2021, doi: 10.2139/ssrn.3794568.
N. Chikkanna, S. Krishnapillai, and V. Ramachandran, “Static and dynamic flexural behaviour of printed polylactic acid with thermal annealing: parametric optimisation and empirical modelling,” Int. J. Adv. Manuf. Technol., vol. 119, no. 1–2, pp. 1179–1197, Mar. 2022, doi: 10.1007/s00170-021-08127-7.
S. Rangisetty and L. D. Peel, “The Effect of Infill Patterns and Annealing on Mechanical,” in ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2017, pp. 1–12.
R. A. Wach, P. Wolszczak, and A. Adamus-Wlodarczyk, “Enhancement of Mechanical Properties of FDM-PLA Parts via Thermal Annealing,” Macromol. Mater. Eng., vol. 303, no. 9, pp. 1–9, 2018, doi: 10.1002/mame.201800169.
N. Jayanth, K. Jaswanthraj, S. Sandeep, N. H. Mallaya, and S. R. Siddharth, “Effect of heat treatment on mechanical properties of 3D printed PLA,” J. Mech. Behav. Biomed. Mater., vol. 123, Nov. 2021, doi: 10.1016/j.jmbbm.2021.104764.
J. Beniak, M. Holdy, P. Križan, and M. Matúš, “Research on parameters optimization for the Additive Manufacturing process,” Transp. Res. Procedia, vol. 40, pp. 144–149, 2019, doi: 10.1016/j.trpro.2019.07.024.
L. Wang, W. M. Gramlich, and D. J. Gardner, “Improving the impact strength of Poly(lactic acid) (PLA) in fused layer modeling (FLM),” Polymer (Guildf)., vol. 114, pp. 242–248, 2017, doi: 10.1016/j.polymer.2017.03.011.
B. Akhoundi, A. H. Behravesh, and A. Bagheri Saed, “Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer,” J. Reinf. Plast. Compos., vol. 38, no. 3, pp. 99–116, 2019, doi: 10.1177/0731684418807300.
V. Slavković, N. Grujović, A. Disic, and A. Radovanović, “Influence of Annealing and Printing Directions on Mechanical Properties of PLA Shape Memory Polymer Produced by Fused Deposition Modeling,” Int. Congr. Serbian Soc. Mech., no. June, pp. 1–8, 2017.
S. Bhandari, R. A. Lopez-Anido, and D. J. Gardner, “Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing,” Addit. Manuf., vol. 30, p. 100922, 2019, doi: 10.1016/j.addma.2019.100922.
J. Butt and R. Bhaskar, “Investigating the effects of annealing on the mechanical properties of FFF-printed thermoplastics,” J. Manuf. Mater. Process., vol. 4, no. 2, pp. 1–20, 2020, doi: 10.3390/jmmp4020038.
A. Szust and G. Adamski, “Using thermal annealing and salt remelting to increase tensile properties of 3D FDM prints,” Eng. Fail. Anal., vol. 132, no. November 2021, p. 105932, 2022, doi: 10.1016/j.engfailanal.2021.105932.
P. Arjun, V. K. Bidhun, U. K. Lenin, V. P. Amritha, R. V. Pazhamannil, and P. Govindan, “Effects of process parameters and annealing on the tensile strength of 3D printed carbon fiber reinforced polylactic acid,” Mater. Today Proc., vol. 62, pp. 7379–7384, 2022, doi: https://doi.org/10.1016/j.matpr.2022.02.142.
S. Wang et al., “Improving mechanical properties for extrusion-based additive manufacturing of poly(lactic acid) by annealing and blending with poly(3-hydroxybutyrate),” Polymers (Basel)., vol. 11, no. 9, pp. 1–13, 2019, doi: 10.3390/polym11091529.
K. K. Guduru and G. Srinivasu, “Effect of post treatment on tensile properties of carbon reinforced PLA composite by 3D printing,” Mater. Today Proc., vol. 33, pp. 5403–5407, 2020, doi: https://doi.org/10.1016/j.matpr.2020.03.128.
M. S. Srinidhi, R. Soundararajan, K. S. Satishkumar, and S. Suresh, “Enhancing the FDM infill pattern outcomes of mechanical behavior for as-built and annealed PETG and CFPETG composites parts,” Mater. Today Proc., vol. 45, pp. 7208–7212, 2021, doi: https://doi.org/10.1016/j.matpr.2021.02.417.
D. G. Zisopol, A. I. Portoaca, I. Nae, and I. Ramadan, “A Comparative Analysis of the Mechanical Properties of Annealed PLA,” Eng. Technol. Appl. Sci. Res., vol. 12, no. 4, pp. 8978–8981, 2022, doi: 10.48084/etasr.5123.
ASTM International, ASTM D638-14: Standard test method for tensile properties of plastics. West Conshohocken, PA: ASTM International, 2014.
N. von Windheim, D. W. Collinson, T. Lau, L. C. Brinson, and K. Gall, “The influence of porosity, crystallinity and interlayer adhesion on the tensile strength of 3D printed polylactic acid (PLA),” Rapid Prototyp. J., vol. 27, no. 7, pp. 1327–1336, Jan. 2021, doi: 10.1108/RPJ-08-2020-0205.
DOI: http://dx.doi.org/10.30811/jpl.v21i1.3386
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .
Alamat Surat :
Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia