Analysis of intake air temperature effect on performance of portable atmospheric water generation (PAWG) systems with heat sink angle orientation of 75o

Muhamad Jafri, Ben Vasco Tarigan, Hairman Sahrudin Lanae

Abstract


The increasing demand for clean water and the diminishing supply of clean water sources can result in a clean water crisis. Air is a ubiquitous, inexpensive, and clean water source. Using Atmospheric Water Generators (AWG), the water contained in the air can be extracted. This study's objective was to determine the effect of inlet air temperature and air heater power variations on tool performance and PAWG condensate water production at a condenser angle of 75 degrees. The procedure utilized is experimental on three PAWG boxes. Each box has a distinct temperature at its entrance. The variation of inlet air temperature is accomplished by heating the air before it enters the box with an air heater; the applied power variations are 0.484 Watt, 0.964 Watt, and 1.702 Watt. The results demonstrated that variations in air heater power and inlet air temperature affected system performance and condensate water production. Maximum water discharge and PAWG performance were achieved when the air heating power was 0.48 watts and the water discharge was 1.166 milli liters per hour. At 0.0084 ml/h/W, the PSys system performance had the highest value. The variable air heating power of 0.946 Watt represents the utmost COP value of PAWG. This power variable has a high temperature difference and influences the COP value at high levels.

Keywords


Atmospheric air, thermoelectric, Peltier Element, PAWG, COP

Full Text:

PDF

References


D. Subhan, U. M. Tang, and F. Fatnanta, “Strategi Pemanfaatan Sumber Air Di Kabupaten Siak Untuk Pengembangan Unit Pelayanan Teknis Daerah (Uptd) Air Minum Kabupaten Siak,” Phot. J. Sain dan Kesehat., vol. 7, no. 01, pp. 11–18, 2016, doi: 10.37859/jp.v7i01.554.

M. Sajid, I. Hassan, and A. Rahman, “An overview of cooling of thermoelectric devices,” Renew. Sustain. Energy Rev., vol. 78, pp. 15–22, 2017, doi: https://doi.org/10.1016/j.rser.2017.04.098.

G. M. Peters, N. J. Blackburn, and M. Armedion, “Environmental assessment of air to water machines - Triangulation to manage scope uncertainty,” Int. J. Life Cycle Assess., vol. 18, no. 5, pp. 1149–1157, 2013, doi: 10.1007/s11367-013-0568-2.

D. Milani, A. Qadir, A. Vassallo, M. Chiesa, and A. Abbas, “Experimentally validated model for atmospheric water generation using a solar assisted desiccant dehumidification system,” Energy Build., vol. 77, pp. 236–246, 2014, doi: 10.1016/j.enbuild.2014.03.041.

A. Nandy, S. Saha, S. Ganguly, and S. Chattopadhyay, “A Project on Atmospheric Water Generator with the Concept of Peltier Effect,” Int. J. Adv. Comput. Res., no. 2, pp. 2277–7970, 2014.

Chakib Alaoui, “Peltier thermoelectric modules modeling and evaluation,” Int. J. Eng, no. 5, pp. 114–121, 2011.

S. Liu et al., “Experimental analysis of a portable atmospheric water generator by thermoelectric cooling method,” Energy Procedia, vol. 142, pp. 1609–1614, 2017, doi: 10.1016/j.egypro.2017.12.538.

Mangsur, “Pengembangan cool tipe CB-02 Multifungsi Ramah Lingkungan Berbasis Termoelektrik untuk Kendaraan Roda Dua,” Universitas Indonesia, Depok, 2010.

M. Eslami, F. Tajeddini, and N. Etaati, “Thermal analysis and optimization of a system for water harvesting from humid air using thermoelectric coolers,” Energy Convers. Manag., vol. 174, no. March 2019, pp. 417–429, 2018, doi: 10.1016/j.enconman.2018.08.045.

https://www.amazon.in/Generic-Thermoelectric-Peltier-Cooler%20Cooling/dp/B00YUP56NC?th=1, “Industrial and Scientific.”

W. He, P. Yu, Z. Hu, S. Lv, M. Qin, and C. Yu, “Experimental study and performance analysis of a portable atmospheric water generator,” Energies, vol. 13, no. 1, pp. 1–14, 2019, doi: 10.3390/en13010073.

Y.-H. Cheng and W.-K. Lin, “Geometric optimization of thermoelectric coolers in a confined volume using genetic algorithms,” Appl. Therm. Eng., vol. 25, no. 17–18, pp. 2983–2997, Dec. 2005, doi: 10.1016/j.applthermaleng.2005.03.007.

C. Udomsakdigool, J. Hirunlabh, J. Khedari, and B. Zeghmati, “Design Optimization of a New Hot Heat Sink with a Rectangular Fin Array for Thermoelectric Dehumidifiers,” Heat Transf. Eng., vol. 28, no. 7, pp. 645–655, Jul. 2007, doi: 10.1080/01457630701266470.

R. Chein and G. Huang, “Thermoelectric cooler application in electronic cooling,” Appl. Therm. Eng., vol. 24, no. 14–15, pp. 2207–2217, 2004, doi: https://doi.org/10.1016/j.applthermaleng.2004.03.001.

C. T. Hand and S. Peuker, “An experimental study of the influence of orientation on water condensation of a thermoelectric cooling heatsink,” Heliyon, vol. 5, no. 10. 2019. doi: 10.1016/j.heliyon.2019.e02752.

I. Lekouch et al., “Influence of temporal variations and climatic conditions on the physical and chemical characteristics of dew and rain in South-West Morocco,” 5th Int. Conf. Fog, Fog Collect. dew, no. July, pp. 4–7, 2010.

I. Casallas, M. Pérez, A. Fajardo, and C. I. Paez-Rueda, “Experimental parameter tuning of a portable water generator system based on a thermoelectric cooler,” Electron., vol. 10, no. 2, pp. 1–14, 2021, doi: 10.3390/electronics10020141.

Y. A. Çengel and M. A. Boles, Thermodynamics: An Engineering Approach, 5th ed. Michigan: McGraw-Hill Higher Education, 2007.

M. E. GmbH, “https://www.meerstetter.ch/customer-center/compendium/70-peltier-elements#COP.”




DOI: http://dx.doi.org/10.30811/jpl.v21i3.3364

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia