Design analysis of mold cavity and core on compression molding of composite material

Muslimin Al Masta, Hasvienda M. Ridlwan, Dhiya Luqyana, Bayu Pambudi, Azam Milah Muhamad

Abstract


This study discusses the design analysis of compression molding cavity and core under 12 tons of pressure and 100oC heat using experimental analysis and Ansys R19.2 simulation. This compression mold is used to process composite materials, mainly thermoset matrix composites. The compression product is a tensile test specimen according to the ASTM D638-4 standard. The main concern of this study aimed to analyze the stress distribution and deflection due to the compression load and heat on the cavity and core of compression molding. Hence, the die construction is safe during the operation under these loads. The analysis was carried out using Von Mises's stress of static loading criteria. The research parameter examined are stress distribution, deflection, and some critical dimensions in the cavity and core. These parameters significantly affect mold performance, product quality, and service life. Experimental analysis shows that the maximum deflection of the cavity and the core is 4.40 x10-4 mm and 1.53 x 10−4 mm, respectively. On the other hand, Simulation analysis shows the maximum deflection of the cavity and core is 4.56 x 10−4 mm and 7.41 x 10-5 mm, respectively. The error between experimental analysis and simulation is 6.87 x 10-5 mm and 3.32 x 10-5 mm for the cavity and the core, respectively. For stress analysis, the maximum value is 37.94 MPa for both cavity and core. On the other hand, simulation analysis shows 262 MPa and 256 MPa for the cavity and core, respectively. Both experimental analysis and simulation show that the result complies with the standard, less than 0,025 mm for deflection, and stress is less than 1034 MPa for maximum stress. Therefore, compression mold structure is safely used.


Keywords


Cavity, core, stress, heat, simulation

Full Text:

PDF

References


Tatara, R. A. (2011). Compression Molding. Applied Plastics Engineering Handbook, 289–309. doi:10.1016/b978-1-4377-3514-7.10017-0

R Daniel, M Muslimin, " Desain Mekanisme Penggerak Compression Molding untuk Biokomposit " Prosiding Seminar Nasional Teknik Mesin 9 (1), pp. 717–726, 2019.

M Arief, M Muslimin, " Rancang Bangun Mesin Compression Molding untuk Material Biokomposit Bagian 2: Mold Pencetak Produk Biokomposit", Prosiding Seminar Nasional Teknik Mesin 9 (1), pp. 734–742, 2019.

U Hasanah, M Muslimin, “Pengaruh Tekanan Compression Moulding terhadap Kinerja Pelat Bipolar Komposit Grafit/Resin Epoksi Komposisi 20% Karbon Tempurung Kelapa”, Jurnal Mekanik Terapan 1 (1), 71-80, 2020.

H. S. Kim and S. H. Chang, "Simulation of the compression molding process for long-fiber reinforced thermoset composites considering fiber bending," Compos. Struct., vol. 230, no. July, pp. 111514, 2019, DOI: 10.1016/j.compstruct.2019.111514.

J. Wulfsberg, A. Herrmann, G. Ziegmann, G. Lonsdorfer, N. Stöß, and M. Fette, "Combination of carbon fiber sheet molding compound and prepreg compression molding in the aerospace industry," Procedia Eng., vol. 81, no. October, pp. 1601–1607, 2014, DOI: 10.1016/j.proeng.2014.10.197.

M. Fette, P. Sander, J. Wulfsberg, H. Zierk, A. Herrmann, and N. Stoess, "Optimized and Cost-Efficient Compression Molds Manufactured by Selective Laser Melting for the Production of Thermoset Fiber Reinforced Plastic Aircraft Components," Procedia CIRP, vol. 35, pp. 25–30, 2015, DOI: 10.1016/j.procir.2015.08.082.

Z. Yang, H. Peng, W. Wang, and T. Liu, "Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites," J. Appl. Polym. Sci., vol. 116, no. 5, pp. 2658–2667, 2010, DOI: 10.1002/app.

R. Al-Mezrakchi, T. Creasy, H. J. Sue, and T. Bremner, "Manipulation of thick-walled PEEK bushing crystallinity and modulus via instrumented compression molding," J. Appl. Polym. Sci., vol. 138, no. 9, pp. 1–16, 2021, DOI: 10.1002/app.49930.

A. A. Shamsuri, "Compression Moulding Technique for Manufacturing Biocomposite Products," International Journal of Applied Science and Technology, vol. 5, no. 3. Vol. 5, No. 3, Malaysia, pp. 23–26, 2015. [Online]

T. Guleria, N. Verma, S. Zafar, and V. Jain, "Fabrication of Kevlar-reinforced® ultra-high molecular weight polyethylene composite through microwave-assisted compression molding for body armor applications," J. Reinf. Plast. Compos., vol. 40, nos. 7–8, pp. 307–320, 2021, DOI: 10.1177/0731684420959449.

Asim, M., Jawaid, M., Saba, N., Ramengmawii, Nasir, M., & Sultan, M. T. H. (2017). Processing of hybrid polymer composites—a review. Hybrid Polymer Composite Materials, 1–22. doi:10.1016/b978-0-08-100789-1.00001-0

Abrar Ibrahim, Hamdi Hamdi, Muslimin Muslimin, Pengaruh Sparking Gap Voltage Dan Low Voltage Amperage Pada Material Removal Rate Proses Sinker EDM Material Dies SKD 11 Dan AISI 316, Mechanical Engineering PNJ Conferences, Seminar Nasional Teknik Mesin, 2019

Muslimin Muslimin, Azam Milah Muhamad, Farid Triawan, Asep Bayu Dani Nandiyanto, Surface Characteristics of Low Carbon Steel JIS G3101 SS400 after Sandblasting Process by Steel Grit G25 Journal of Engg. Research Vol.10 No. (2B) pp. 193-204, 2021. https://doi.org/10.36909/jer.10091

Bae, W., Kim, S., Kim, Y. et al. Suppression of machine tool spindle vibration using TiC-SKH51 metal-matrix composite. J Mech Sci Technol 35, 3619–3625 (2021). https://doi.org/10.1007/s12206-021-0732-8




DOI: http://dx.doi.org/10.30811/jpl.v21i2.3311

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .

 

Alamat Surat :

Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia