Design of photovoltaic/thermal (PV/T) with heat pipes as a heat transfer medium used for water heater

Rahmat Iman Mainil, Afdhal Kurniawan Mainil, Azridjal Aziz, Faisal Afif

Abstract


One of the main obstacles for developers and users of photovoltaic (PV) modules is that the module temperature is too high due to high solar radiation and a higher ambient temperature, which reduces PV efficiency. A photovoltaic/thermal (PV/T) system is a technique developed for absorbing heat, that combines PV with a solar thermal collector (STC). In this research, heat pipes are used as the heat transfer medium. This paper aims to design a PV/T system for water heating and examines the thermal performance and water temperature that can be achieved by PV/T. In designing PV/T, the method used is to estimate the intensity of solar radiation and determine the size of the thermal collector, thermal insulation, type of working fluid, and heat pipe filling ratio. The PV/T thermal performance is also tested after the system design has been built. The design parameters that have been obtained are the PV area of 0.67 m2 and the volume of heated water of 20 liters. This design proposes water as the working fluid of the heat pipe with a filling ratio of 10%. The system performance indicates that PV/T could heat the water to 50.9 °C with energy absorbed by the water of 1.85 MJ, and the maximum thermal efficiency of PV/T is 27.14%. The results show that PV/T has a very promising future in terms of its ability to use heat energy and can be further developed for future research so that it can encourage people to use environmentally friendly renewable energy

Keywords


Photovoltaic/thermal; heat pipe; solar water heater; PV/T; solar energy

Full Text:

PDF

References


M. H. Hasan, T. M. I. Mahlia, and H. Nur, “A review on energy scenario and sustainable energy in Indonesia,” Renew. Sustain. Energy Rev., vol. 16, no. 4, pp. 2316–2328, 2012, doi: 10.1016/j.rser.2011.12.007.

R. I. Mainil, A. W. Sulaiman, A. K. Mainil, and A. Aziz, “Performance Enhancement of Split Air Conditioner During Evaporative Cooling Application,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 86, no. 2, pp. 147–156, 2021, doi: 10.37934/arfmts.86.2.147156.

A. Aziz, T. Thalal, I. Amri, H. Herisiswanto, and A. K. Mainil, “Effect of heat recovery water heater system on the performance of residential split air conditioner using hydrocarbon refrigerant (HCR22),” IOP Conf. Ser. Mater. Sci. Eng., vol. 237, no. 1, pp. 0–7, 2017, doi: 10.1088/1757-899X/237/1/012010.

M. Z. A. Ab Kadir and Y. Rafeeu, “A review on factors for maximizing solar fraction under wet climate environment in Malaysia,” Renew. Sustain. Energy Rev., vol. 14, no. 8, pp. 2243–2248, 2010, doi: 10.1016/j.rser.2010.04.009.

A. Aziz, M. R. at Syahnan, A. K. Mainil, and R. I. Mainil, “Experimental Investigation of a Split Air Conditioning Using Condensate as Direct Evaporative Cooling,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 86, no. 1, pp. 140–153, 2021, doi: 10.37934/arfmts.86.1.140153.

F. Afif and A. Martin, “Tinjauan Potensi dan Kebijakan Energi Surya di Indonesia,” vol. 6, no. 1, pp. 43–52, 2022.

A. K. Mainil, A. Aziz, J. Harianto, and R. I. Mainil, “Comparative assessment of closed loop heat pump dryer and direct solar dryer system for banana drying,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 66, no. 2, pp. 136–144, 2020.

C. Hermanu, B. Santoso, and F. X. R. Wicaksono, “Design of 1 MWp floating solar photovoltaic ( FSPV ) power plant in Indonesia Design of 1 MWp Floating Solar Photovoltaic ( FSPV ) Power Plant in Indonesia,” vol. 030013, no. April, 2019, doi: 10.1063/1.5098188.

A. Shafieian, M. Khiadani, and A. Nosrati, “A review of latest developments, progress, and applications of heat pipe solar collectors,” Renew. Sustain. Energy Rev., vol. 95, no. January, pp. 273–304, 2018, doi: 10.1016/j.rser.2018.07.014.

R. Shukla, K. Sumathy, P. Erickson, and J. Gong, “Recent advances in the solar water heating systems: A review,” Renew. Sustain. Energy Rev., vol. 19, pp. 173–190, 2013, doi: 10.1016/j.rser.2012.10.048.

U. Sajjad, M. Amer, H. M. Ali, A. Dahiya, and N. Abbas, “Cost effective cooling of photovoltaic modules to improve efficiency,” Case Stud. Therm. Eng., vol. 14, no. January, p. 100420, 2019, doi: 10.1016/j.csite.2019.100420.

S. Chander, A. Purohit, A. Sharma, Arvind, S. P. Nehra, and M. S. Dhaka, “A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature,” Energy Reports, vol. 1, pp. 104–109, 2015, doi: 10.1016/j.egyr.2015.03.004.

A. Herez, H. El Hage, T. Lemenand, M. Ramadan, and M. Khaled, “Review on photovoltaic/thermal hybrid solar collectors: Classifications, applications and new systems,” Sol. Energy, vol. 207, no. May, pp. 1321–1347, 2020, doi: 10.1016/j.solener.2020.07.062.

Y. Deng, Z. Quan, Y. Zhao, L. Wang, and Z. Liu, “Experimental research on the performance of household-type photovoltaic-thermal system based on micro-heat-pipe array in Beijing,” Energy Convers. Manag., vol. 106, pp. 1039–1047, 2015, doi: 10.1016/j.enconman.2015.09.067.

M. Kutz, Mechanical Engineers’ Handbook, Volume 4: Energy and Power. Wiley, 2015.

K. A. Joudi and A. M. Witwit, “Improvements of gravity assisted wickless heat pipes,” Energy Convers. Manag., vol. 41, no. 18, pp. 2041–2061, 2000, doi: 10.1016/S0196-8904(00)00003-0.

P. Gang, F. Huide, Z. Huijuan, and J. Jie, “Performance study and parametric analysis of a novel heat pipe PV/T system,” Energy, vol. 37, no. 1, pp. 384–395, 2012, doi: 10.1016/j.energy.2011.11.017.

Z. Xuxin, F. Huide, J. Jie, S. Hongyuan, M. Rui, and W. Qixing, “Comparative study on performances of a heat-pipe PV/T system and a heat-pipe solar water heating system,” Int. J. Green Energy, vol. 13, no. 3, pp. 229–240, 2016, doi: 10.1080/15435075.2014.910782.

M. Modjinou, J. Ji, J. Li, W. Yuan, and F. Zhou, “A numerical and experimental study of micro-channel heat pipe solar photovoltaics thermal system,” Appl. Energy, vol. 206, no. May, pp. 708–722, 2017, doi: 10.1016/j.apenergy.2017.08.221.

M. Hu, R. Zheng, G. Pei, Y. Wang, J. Li, and J. Ji, “Experimental study of the effect of inclination angle on the thermal performance of heat pipe photovoltaic/thermal (PV/T) systems with wickless heat pipe and wire-meshed heat pipe,” Appl. Therm. Eng., vol. 106, pp. 651–660, 2016, doi: https://doi.org/10.1016/j.applthermaleng.2016.06.003.

D. Das, P. Kalita, and O. Roy, “Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development,” Renew. Sustain. Energy Rev., vol. 84, no. October 2017, pp. 111–130, 2018, doi: 10.1016/j.rser.2018.01.002.

M. Hissouf, M. Feddaoui, M. Najim, and A. Charef, “Performance of a photovoltaic-thermal solar collector using two types of working fluids at different fluid channels geometry,” Renew. Energy, vol. 162, pp. 1723–1734, 2020, doi: 10.1016/j.renene.2020.09.097.

C. A. Gueymard and D. R. Myers, “Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling,” Sol. Energy, vol. 83, no. 2, pp. 171–185, 2009, doi: 10.1016/j.solener.2008.07.015.

M. Z. Hakuba, D. Folini, A. Sanchez-Lorenzo, and M. Wild, “Spatial representativeness of ground-based solar radiation measurements,” J. Geophys. Res. Atmos., vol. 118, no. 15, pp. 8585–8597, 2013, doi: 10.1002/jgrd.50673.

S. A. Kalogirou, Solar energy engineering: processes and systems. Academic press, 2013.

P. Gang, F. Huide, Z. Tao, and J. Jie, “A numerical and experimental study on a heat pipe PV/T system,” Sol. Energy, vol. 85, no. 5, pp. 911–921, 2011, doi: 10.1016/j.solener.2011.02.006.

J. A. Duffie and W. A. Beckman, Solar engineering of thermal processes. John Wiley & Sons, 2013.

M. Carmona and M. Palacio, “Thermal modelling of a flat plate solar collector with latent heat storage validated with experimental data in outdoor conditions,” Sol. Energy, vol. 177, no. August 2018, pp. 620–633, 2019, doi: 10.1016/j.solener.2018.11.056.

K. G. T. Hollands, T. E. Unny, G. D. Raithby, and L. Konicek, “Free Cotwectiwe Heat Transfer Across Inclined Air Layers,” no. May 1976, pp. 189–193, 1976.

D. Mowla and G. Karimi, “Mathematical modelling of solar stills in Iran,” Sol. Energy, vol. 55, no. 5, pp. 389–393, 1995, doi: 10.1016/0038-092X(95)00041-O.

H. Long, T. T. Chow, and J. Ji, “Building-integrated heat pipe photovoltaic/thermal system for use in Hong Kong,” Sol. Energy, vol. 155, pp. 1084–1091, 2017, doi: 10.1016/j.solener.2017.07.055.

R. Banovčan, M. Novomestský, M. Vantúch, A. Kapjor, and P. Nemec, “Methods of filling the heat pipes,” MATEC Web Conf., vol. 168, pp. 1–8, 2018, doi: 10.1051/matecconf/201816807004.

M. A. Ersöz, “Effects of different working fluid use on the energy and exergy performance for evacuated tube solar collector with thermosyphon heat pipe,” Renew. Energy, vol. 96, pp. 244–256, 2016, doi: 10.1016/j.renene.2016.04.058.

M. Arab and A. Abbas, “Model-based design and analysis of heat pipe working fluid for optimal performance in a concentric evacuated tube solar water heater,” Sol. Energy, vol. 94, pp. 162–176, 2013, doi: 10.1016/j.solener.2013.03.029.

A. E. Kabeel, M. M. Khairat Dawood, and A. I. Shehata, “Augmentation of thermal efficiency of the glass evacuated solar tube collector with coaxial heat pipe with different refrigerants and filling ratio,” Energy Convers. Manag., vol. 138, pp. 286–298, 2017, doi: 10.1016/j.enconman.2017.01.048.

L. Wei, D. Yuan, D. Tang, and B. Wu, “A study on a flat-plate type of solar heat collector with an integrated heat pipe,” Sol. Energy, vol. 97, pp. 19–25, 2013, doi: 10.1016/j.solener.2013.07.025.

A. Jahanbakhsh, H. R. Haghgou, and S. Alizadeh, “Experimental analysis of a heat pipe operated solar collector using water-ethanol solution as the working fluid,” Sol. Energy, vol. 118, pp. 267–275, 2015, doi: 10.1016/j.solener.2015.04.023.

M. S. Elmosbahi, A. W. Dahmouni, C. Kerkeni, A. A. Guizani, and S. Ben Nasrallah, “An experimental investigation on the gravity assisted solar heat pipe under the climatic conditions of Tunisia,” Energy Convers. Manag., vol. 64, pp. 594–605, 2012, doi: 10.1016/j.enconman.2012.06.009.

H. N. Chaudhry, B. R. Hughes, and S. A. Ghani, “A review of heat pipe systems for heat recovery and renewable energy applications,” Renew. Sustain. Energy Rev., vol. 16, no. 4, pp. 2249–2259, 2012, doi: 10.1016/j.rser.2012.01.038.




DOI: http://dx.doi.org/10.30811/jpl.v21i2.3298

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .

 

Alamat Surat :

Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia