Effect of green clam shells powder addition on properties biodegradable films of polyvinyl alcohol (PVA)
Abstract
Keywords
Full Text:
PDFReferences
Inamuddin and T. Altalhi, (2021) “Handbook of Bioplastics and Biocomposites Engineering Applications,” Handb. Bioplastics Biocomposites Eng. Appl., pp. 1–656, doi: 10.1002/9781119160182.
Javierre. C, Sarasa, I. Claveria, and A. Fernández, (2015) “Study of the biodisintegration on a painted bioplastic material waste,” Mater. Plast., vol. 52, no. 1, pp. 116–121.
Koch. D, and Mihalyi. B, (2018) “Assessing the change in environmental impact categories when replacing conventional plastic with bioplastic in chosen application fields,” Chem. Eng. Trans., vol. 70, pp. 853–858, doi: 10.3303/CET1870143.
Huerta. E, Lwanga et al., (2018) “Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: A potential for soil restoration,” Sci. Total Environ., vol. 624, pp. 753–757, doi: 10.1016/j.scitotenv.2017.12.144.
M. W. Guzik et al., (2014) “Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate,” Appl. Microbiol. Biotechnol., vol. 98, no. 9, pp. 4223–4232, doi: 10.1007/s00253-013-5489-2.
R. N. Tharanathan, (2003) “Biodegradable films and composite coatings: Past, present and future,” Trends Food Sci. Technol., vol. 14, no. 3, pp. 71–78, doi: 10.1016/S0924-2244(02)00280-7.
N. Raddadi and F. Fava, (2019) “Biodegradation of oil-based plastics in the environment: Existing knowledge and needs of research and innovation,” Sci. Total Environ., vol. 679, pp. 148–158, doi: 10.1016/j.scitotenv.2019.04.419.
C. J. Rhodes, (2019) “Solving the plastic problem: From cradle to grave, to reincarnation,” Sci. Prog., vol. 102, no. 3, pp. 218–248, 2019, doi: 10.1177/0036850419867204.
N. M. El-Sawy, M. B. El-Arnaouty, and A. M. Abdel Ghaffar,(2010) “Γ-Irradiation Effect on the Non-Cross-Linked and Cross-Linked Polyvinyl Alcohol Films,” Polym. - Plast. Technol. Eng., vol. 49, no. 2, pp. 169–177, doi: 10.1080/03602550903284248.
R. A. Gross and B. Kalra, (2002) “Biodegradable polymers for the environment,” Science (80-. )., vol. 297, no. 5582, pp. 803–807, doi: 10.1126/science.297.5582.803.
E. Chiellini, P. Cinelli, F. Chiellini, and S. H. Imam, (2004) “Environmentally degradable bio-based polymeric blends and composites,” Macromol. Biosci., vol. 4, no. 3, pp. 218–231, doi: 10.1002/mabi.200300126.
E. Rudnik, (2008) “Compostible Polymer Materials,” Compost. Polym. Mater.
C. A. Lin and C. C. Tung, (2010) “The preparation and characterization of glycerol pseudo-thermoplastic starch/glycerol pseudo-thermoplastic polyvinyl alcohol (GTPS/GTPVA) biodegradable films using the solution casting method,” Polym. - Plast. Technol. Eng., vol. 49, no. 3, pp. 279–284, doi: 10.1080/03602550903413912.
N. Tudorachi, C. N. Cascaval, M. Rusu, and M. Pruteanu, (2002) “Testing of polyvinyl alcohol and starch mixtures as biodegradable polymeric materials,” Polym. Test., vol. 19, no. 7, pp. 785–799, doi: 10.1016/S0142-9418(99)00049-5.
R. Chandra and R. Rustgi, (1998) “Biodegradable polymers,” Prog. Polym. Sci., vol. 23, no. 7, pp. 1273–1335, doi: 10.1016/S0079-6700(97)00039-7.
L. Vannucci et al., (2018) “Calcium Intake in bone health: A focus on calcium-rich mineral waters,” Nutrients, vol. 10, no. 12, pp. 1–12, doi: 10.3390/nu10121930.
N. Sezer, (2013) “Production of Precipitated Calcium Carbonate From Marble Wastes a Thesis Submitted To the Graduate School of Natural and Applied Sciences of Middle East Technical University,”
B. N. Bhattacharjee, V. K. Mishra, S. B. Rai, O. Parkash, and D. Kumar, (2019) “Structure of Apatite Nanoparticles Derived from Marine Animal (Crab) Shells: An Environment-Friendly and Cost-Effective Novel Approach to Recycle Seafood Waste,” ACS Omega, vol. 4, no. 7, pp. 12753–12758, doi: 10.1021/acsomega.9b00134.
M. G. Cho, S. M. Bae, and J. Y. Jeong, (2017) “Egg shell and oyster shell powder as alternatives for synthetic phosphate: Effects on the quality of cooked ground pork products,” Korean J. Food Sci. Anim. Resour., vol. 37, no. 4, pp. 571–578, doi: 10.5851/kosfa.2017.37.4.571.
M. E. Hoque, (2013) “Processing and Characterization of Cockle Shell Calcium Carbonate (CaCO3) Bioceramic for Potential Application in Bone Tissue Engineering,” J. Mater. Sci. Eng., vol. 02, no. 04, pp. 2–6, doi: 10.4172/2169-0022.1000132.
H. K. Kiranda, R. Mahmud, D. Abubakar, and Z. A. Zakaria, (2018) “Fabrication, characterization and cytotoxicity of spherical-shaped conjugated gold-cockle shell derived calcium carbonate nanoparticles for biomedical applications,” Nanoscale Res. Lett., vol. 13, no. 1, doi: 10.1186/s11671-017-2411-3.
M. Le Troedec et al., (2008) “Influence of various chemical treatments on the composition and structure of hemp fibres,” Compos. Part A Appl. Sci. Manuf., vol. 39, no. 3, pp. 514–522, doi: 10.1016/j.compositesa.2007.12.001.
J. Coreño and O. Coreño, (2005) “Evaluation of calcium titanate as apatite growth promoter,” J. Biomed. Mater. Res. - Part A, vol. 75, no. 2, pp. 478–484, doi: 10.1002/jbm.a.30447.
A. Mukminin, M. Firdaus, Y. Yuniarti, and M. W. Syabani, (2019) “Pengaruh Waktu Kalsinasi Abu Cangkang Kelomang (Paguroidea) pada Suhu Tinggi Dalam Pembentukan Katalis Padat CaO,” Indones. J. Chem. Res., vol. 4, no. 1, pp. 1–8, doi: 10.20885/ijcr.vol4.iss1.art1.
D. Ariawan, T. S. Rivai, E. Surojo, S. Hidayatulloh, H. I. Akbar, and A. R. Prabowo, (2020) “Effect of alkali treatment of Salacca Zalacca fiber (SZF) on mechanical properties of HDPE composite reinforced with SZF,” Alexandria Eng. J., vol. 59, no. 5, pp. 3981–3989, doi: 10.1016/j.aej.2020.07.005.
DOI: http://dx.doi.org/10.30811/jpl.v21i2.3261
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .
Alamat Surat :
Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia