Optimization of Savonius Turbine Towards Different Inner Blade Positions to Improve Turbine Performance

Yusuf Dewantoro Herlambang, Supriyo Supriyo, Budhi Prasetiyo, Abdul Syukur Alfauzi, Marliyati Marliyati, Wawan Purwanto, Fatahul Arifin, Zakki Fuadi Emzain

Abstract


The purpose of this study is to examine the performance of the Savonius turbine on the inner blade position in order to improve turbine efficiency. The blades used are a simplification of the Savonius U/L and the Savonius 1:2 double blade model. This research begins by creating four blade models: a single-blade model, a double-blade model at the blade's tip, a double-blade model at the blade's base, a single-blade model, and a double-blade model along the blades against the wind. The four models are then fitted in the test system for generator performance. Next, the efficiency characteristics of the turbine will be tested against rotation. The test results of the four models were evaluated by comparing each model's efficiency. The results indicate that the Savonius double-blade 1:2 and Savonius U/L turbines achieve efficiencies of 2.42% and 2.1% at 5 m/s and 7 m/s, respectively. At speeds of 5 m/s and 7 m/s, the double-tip position inner blade model increased by 81% and 61%, respectively. The double-tip inner blade variant has the maximum efficiency at 9 m/s, at 3.71 percent. Therefore, the Savonius U/L type vertical axis wind turbine with a 1:2 double blade is the most suited blade model for usage at wind speeds less than 7 meters per second. While the Savonius model with innovations in the inner blade double tip position is suitable for operation at wind speeds greater than 9 meters per second, the Savonius model without such advances is not


Keywords


Inner blade position, double blade on tip, double blade on root, efficiency, Savonius turbine

Full Text:

PDF

References


Y. D. H. S. B. P. A. S. A. T. P. M. F. Arifin, “Experimental and Simulation Investigation on Savonius Turbine: Influence of Inlet-Outlet Ratio Using a Modified Blade Shaped to Improve Performance,” Jt. J. Nov. Carbon Resour. Sci. Greenand Asia Strateg., vol. 9, no. 2, pp. 457–464, 2022, doi: https://doi.org/10.5109/4794172.

Y. D. Herlambang, S. Supriyo, and B. Prasetiyo, “Improved Savonius double blade performance using modified blade shaped with variations of the wind flow ratios on the blade inlet and outlet side,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1108, no. 1, 2021, doi: 10.1088/1757-899x/1108/1/012041.

M. H. Pranta, M. S. Rabbi, and M. M. Roshid, “A computational study on the aerodynamic performance of modified savonius wind turbine,” Results Eng., vol. 10, 2021, doi: 10.1016/j.rineng.2021.100237.

H. L. Bai, C. M. Chan, X. M. Zhu, and K. M. Li, “A numerical study on the performance of a Savonius-type vertical-axis wind turbine in a confined long channel,” Renew. Energy, vol. 139, 2019, doi: 10.1016/j.renene.2019.02.044.

Y. D. Herlambang, S. Supriyo, B. Prasetiyo, and T. H. Mulud, “Unjuk kerja Turbin Savonius Menggunakan Generator Sinkron Magnet Permanen pada Variasi Pembebanan dan Kecepatan Angin yang Berbeda,” J. Rekayasa Mesin, vol. 16, no. 2, 2021, doi: 10.32497/jrm.v16i2.2860.

F. Wenehenubun, A. Saputra, and H. Sutanto, “An experimental study on the performance of Savonius wind turbines related with the number of blades,” in Energy Procedia, 2015, vol. 68. doi: 10.1016/j.egypro.2015.03.259.

S. Mauro, S. Brusca, R. Lanzafame, and M. Messina, “CFD modeling of a ducted Savonius wind turbine for the evaluation of the blockage effects on rotor performance,” Renew. Energy, vol. 141, 2019, doi: 10.1016/j.renene.2019.03.125.

Y. D. Herlambang, A. Roihatin, Kurnianingsih, T. Prasetyo, S. C. Lee, and J. C. Shyu, “Computation and numerical modeling of fuel concentration distribution and current density on performance of the microfluidic fuel cell,” in AIP Conference Proceedings, 2020, vol. 2197. doi: 10.1063/1.5140949.

M. Tahani, A. Rabbani, A. Kasaeian, M. Mehrpooya, and M. Mirhosseini, “Design and numerical investigation of Savonius wind turbine with discharge flow directing capability,” Energy, vol. 130, 2017, doi: 10.1016/j.energy.2017.04.125.

B. Loganathan, I. Mustary, H. Chowdhury, and F. Alam, “Effect of sizing of a Savonius type vertical axis micro wind turbine,” in Energy Procedia, 2017, vol. 110. doi: 10.1016/j.egypro.2017.03.184.

J. H. Lee, Y. T. Lee, and H. C. Lim, “Effect of twist angle on the performance of Savonius wind turbine,” Renew. Energy, vol. 89, 2016, doi: 10.1016/j.renene.2015.12.012.

C. Promdee and C. Photong, “Effects of Wind Angles and Wind Speeds on Voltage Generation of Savonius Wind Turbine with Double Wind Tunnels,” in Procedia Computer Science, 2016, vol. 86. doi: 10.1016/j.procs.2016.05.044.

M. Tartuferi, V. D’Alessandro, S. Montelpare, and R. Ricci, “Enhancement of savonius wind rotor aerodynamic performance: A computational study of new blade shapes and curtain systems,” Energy, vol. 79, no. C, 2015, doi: 10.1016/j.energy.2014.11.023.

Y. D. Herlambang, S. C. Lee, and H. C. Hsu, “Numerical estimation of photovoltaic–electrolyzer system performance on the basis of a weather database,” Int. J. Green Energy, vol. 14, no. 7, 2017, doi: 10.1080/15435075.2017.1307200.

Y. Dewantoro Herlambang, A. Roihatin, Kurnianingsih, S. C. Lee, and J. C. Shyu, “MEMS-Based Microfluidic Fuel Cell for in Situ Analysis of the Cell Performance on the Electrode Surface,” in Journal of Physics: Conference Series, 2020, vol. 1444, no. 1. doi: 10.1088/1742-6596/1444/1/012044.

A. Sanusi, S. Soeparman, S. Wahyudi, and L. Yuliati, “Experimental study of combined blade savonius wind turbine,” Int. J. Renew. Energy Res., vol. 6, no. 2, 2016, doi: 10.20508/ijrer.v6i2.3455.g6826.

D. D. D. P. Tjahjana, Z. Arifin, S. Suyitno, W. E. Juwana, A. R. Prabowo, and C. Harsito, “Experimental study of the effect of slotted blades on the Savonius wind turbine performance,” Theor. Appl. Mech. Lett., vol. 11, no. 3, 2021, doi: 10.1016/j.taml.2021.100249.

B. A. Storti, J. J. Dorella, N. D. Roman, I. Peralta, and A. E. Albanesi, “Improving the efficiency of a Savonius wind turbine by designing a set of deflector plates with a metamodel-based optimization approach,” Energy, vol. 186, 2019, doi: 10.1016/j.energy.2019.07.144.

Y. D. Herlambang and W. Wahyono, “Rancang Bangun Turbin Angin Poros Horizontal 9 Sudu Flat Dengan Variasi Rasio Lebar Sudu Top Dan Bottom Untuk Meningkatkan Kinerja PLTB,” Eksergi, vol. 15, no. 2, 2019, doi: 10.32497/eksergi.v15i2.1508.

H. A. Hassan Saeed, A. M. Nagib Elmekawy, and S. Z. Kassab, “Numerical study of improving Savonius turbine power coefficient by various blade shapes,” Alexandria Eng. J., vol. 58, no. 2, 2019, doi: 10.1016/j.aej.2019.03.005.

E. Antar and M. Elkhoury, “Parametric sizing optimization process of a casing for a Savonius Vertical Axis Wind Turbine,” Renew. Energy, vol. 136, 2019, doi: 10.1016/j.renene.2018.12.092.

A. L. Manganhar, A. H. Rajpar, M. R. Luhur, S. R. Samo, and M. Manganhar, “Performance analysis of a savonius vertical axis wind turbine integrated with wind accelerating and guiding rotor house,” Renew. Energy, vol. 136, 2019, doi: 10.1016/j.renene.2018.12.124.

A. S. Saad, I. I. El-Sharkawy, S. Ookawara, and M. Ahmed, “Performance enhancement of twisted-bladed Savonius vertical axis wind turbines,” Energy Convers. Manag., vol. 209, 2020, doi: 10.1016/j.enconman.2020.112673.

Y. D. Herlambang et al., “MODEL ALAT UKUR KECEPATAN ANGIN, ARAH ANGIN, DAN INTENSITAS RADIASI MATAHARI,” Eksergi, vol. 16, no. 2, 2020, doi: 10.32497/eksergi.v16i2.2210.

R. Alipour, R. Alipour, F. Fardian, S. S. R. Koloor, and M. Petrů, “Performance improvement of a new proposed Savonius hydrokinetic turbine: a numerical investigation,” Energy Reports, vol. 6, 2020, doi: 10.1016/j.egyr.2020.10.072.

M. Eshagh Nimvari, H. Fatahian, and E. Fatahian, “Performance improvement of a Savonius vertical axis wind turbine using a porous deflector,” Energy Convers. Manag., vol. 220, 2020, doi: 10.1016/j.enconman.2020.113062.

S. Sharma and R. K. Sharma, “Performance improvement of Savonius rotor using multiple quarter blades – A CFD investigation,” Energy Convers. Manag., vol. 127, 2016, doi: 10.1016/j.enconman.2016.08.087.

M. Zemamou, M. Aggour, and A. Toumi, “Review of savonius wind turbine design and performance,” in Energy Procedia, 2017, vol. 141. doi: 10.1016/j.egypro.2017.11.047.

H. Belmili, R. Cheikh, T. Smail, N. Seddaoui, and R. W. Biara, “Study, design and manufacturing of hybrid vertical axis Savonius wind turbine for urban architecture,” in Energy Procedia, 2017, vol. 136. doi: 10.1016/j.egypro.2017.10.389.

Y. D. Herlambang, B. Prasetiyo, S. Supriyo, W. Wahyono, and T. H. Mulud, “MODEL TURBIN ANGIN AIRFOIL NACA 4418 TERHADAP VARIASI BUKAAN SUDUT SUDU PADA KECEPATAN ANGIN BERBEDA,” J. Integr., vol. 11, no. 2, 2019, doi: 10.30871/ji.v11i2.1659.

Y. D. Herlambang, M. D. Surendra, and Y. M. Safarudin, “Pembuatan Turbin Double Spherical Sebagai Upaya Memperbaiki Kinerja Turbin Spherical,” Eksergi, vol. 14, no. 3, 2019, doi: 10.32497/eksergi.v14i3.1368.

S. C. Goh, S. R. Boopathy, C. Krishnaswami, and J. U. Schlüter, “Tow testing of Savonius wind turbine above a bluff body complemented by CFD simulation,” Renew. Energy, vol. 87, 2016, doi: 10.1016/j.renene.2015.10.015.




DOI: http://dx.doi.org/10.30811/jpl.v21i1.3248

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .

 

Alamat Surat :

Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia