Optimization of S-EDM Process Parameters on Material Removal Rate using Copper Electrodes

Khoirudin Khoirudin, Sukarman Sukarman, Nana Rahdiana, Ade Suhara, Ahmad Fauzi

Abstract


This article demonstrates that the sinker electrical discharge machining (S-EDM) method can be enhanced using SPHC (JIS G 3131) materials with a hardened surface. During S-EDM, neither contact nor a cutting force exists between the electrode and the workpiece. S-EDM is advantageous because it eliminates mechanical stress, chatter, and vibration issues with traditional milling. S-EDM is widely employed, for example, in the manufacturing of molds for automotive and aviation components. Taguchi design and signal-to-noise ratio (S/N ratio) were selected to examine the impact of the input parameter model on the material removal rate (MRR). The Taguchi approach assessed three input parameters and three experimental levels. The parameters pulse current (I), spark time (Ton), and gap voltage (Vg) were chosen to evaluate the MRR performance of the S-EDM process with the SPHC-hardened workpiece material. Copper with a diameter of 10 mm is chosen as the electrode material. This study aims to determine the optimal MRR for the chosen input variables. Results indicate that a more effective pulse current value promotes debris removal from the machining zone and stabilizes following spark release, speeding the material removal rate (MRR). In the S-EDM machining process, the pulse current value significantly affects the MRR and is one of the most significant response variables

Keywords


Electrical discharge machining; Material removal rate; SPHC; Signal-to-noise ratio; Taguchi design

Full Text:

PDF

References


E. C. Jameson, Electrical Discharge Machining. Dearborn: Society of Manufacturing Engineers, 2001.

N. K. Singh and Y. Singh, “Experimental Investigation and Modeling of Surface Finish in Argon-Assisted Electrical Discharge Machining Using Dimensional Analysis,” Arab. J. Sci. Eng., vol. 44, no. 6, pp. 5839–5850, 2019.

P. Balasubramanian and T. Senthilvelan, “Optimization of Machining Parameters in EDM Process Using Cast and Sintered Copper Electrodes,” Procedia Mater. Sci., vol. 6, no. Icmpc, pp. 1292–1302, 2014.

H. El-Hofy, Fundamentals of machining processes: conventional and non-conventional processes. Boca: CRC Press, 2019.

C. C. Wang and B. H. Yan, “Blind-hole drilling of Al2O3/6061Al composite using rotary electro-discharge machining,” in Journal of Materials Processing Technology, 2000, vol. 102, no. 1, pp. 90–102.

E. Aliakbari and H. Baseri, “Optimization of machining parameters in rotary EDM process by using the Taguchi method,” Int. J. Adv. Manuf. Technol., vol. 62, no. 9–12, pp. 1041–1053, 2012.

T. Sultan, A. Kumar, and R. D. Gupta, “Material Removal Rate, Electrode Wear Rate, and Surface Roughness Evaluation in Die Sinking EDM with Hollow Tool through Response Surface Methodology,” Int. J. Manuf. Eng., vol. 2014, pp. 1–16, 2014.

S. Chandramouli and K. Eswaraiah, “Optimization of EDM Process parameters in Machining of 17-4 PH Steel using Taguchi Method,” Mater. Today Proc., vol. 4, no. 2, pp. 2040–2047, 2017.

R. Swiercz, D. Oniszczuk-Swiercz, L. Dabrowski, and J. Zawora, “Optimization of machining parameters of electrical discharge machining tool steel 1.2713,” AIP Conf. Proc., vol. 2017, no. October, 2018.

Japanese Industrial Standard, JIS G 3131 Hot-rolled mild steel plates, sheet and strip Title. 2010.

A. Abdulah and S. Sukarman, “OPTIMASI SINGLE RESPONSE PROSES RESISTANCE SPOT WELDING,” Multitek Indones. J. Ilm., vol. 6223, no. 2, pp. 69–79, 2020.

Japanese Industrial Standard, JIS G 4051 Carbon steels for machine structural use. 2016.

A. Moghanizadeh, “Reducing side overcut in EDM process by changing electrical field between tool and work piece,” Int. J. Adv. Manuf. Technol., vol. 90, no. 1–4, pp. 1035–1042, 2017.

Z. F. Emzain, U. S. Amrullah, A. Mufarrih, N. Qosim, and Y. D. Herlambang, “Design optimization of sleeve finger splint model using Finite Element Analysis,” J. Polimesin, vol. 19, no. 2, pp. 147–152, 2021.

K. Khoirudin, S. Sukarman, S. Siswanto, N. Rahdiana, and A. Suhara, “Analysis of Spring-back and Spring-go on Variation of V-Dies Bending Angle Using Galvanized SGCC Steel Sheet,” J. Tek. Mesin Mech. Xplore, vol. 3, no. 1, pp. 17–25, 2022.

P. J. Ross, Taguchi Techniques for Quality Engineering. New York: Tata McGraw-Hill, 2005.

S. Sukarman, A. Abdulah, A. D. Shieddieque, N. Rahdiana, and K. Khoirudin, “OPTIMIZATION OF THE RESISTANCE SPOT WELDING PROCESS OF SECC-AF AND SGCC GALVANIZED STEEL SHEET USING THE TAGUCHI METHOD,” SINERGI, vol. 25, no. 3, pp. 319–328, 2021.

S. Sukarman, A. D. Shieddieque, C. Anwar, N. Rahdiana, and A. I. Ramadhan, “Optimization of Powder Coating Process Parameters in Mild Steel (Spcc-Sd) To Improve Dry Film Thickness,” J. Appl. Eng. Sci., vol. 19, no. 2, pp. 1–9, 2021.

K. Khoirudin, S. Sukarman, N. Rahdiana, and A. Fauzi, “ANALISIS FENOMENA SPRING-BACK / SPRING-GO FACTOR PADA LEMBARAN BAJA KARBON RENDAH MENGGUNAKAN PENDEKATAN EKSPERIMENTAL,” J. Teknol., vol. 14, no. 1, 2022.

S. F. Arnold, Design of Experiments with MINITAB, vol. 60, no. 2. 2006.

A. Budianto, S. Sukarman, S. B. Jumawan, and A. Abdulah, “OPTIMASI RESPON TUNGGAL PADA PROSES TEXTURING BENANG DTY-150D / 96F MENGGUNAKAN METODE TAGUCHI SINGLE RESPONSE OPTIMIZATION OF DTY-150D / 96F YARN TEXTURING PROCESS USING TAGUCHI METHOD,” Arena Tekst., vol. 35, no. 2, pp. 77–86, 2020.




DOI: http://dx.doi.org/10.30811/jpl.v21i1.3199

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .

 

Alamat Surat :

Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia