Optimization of the performance of the steam turbine SCSF-31.2" with 6 stages of axial exhaust in "X" geothermal power plant (PLTP "X")

Hernawan Novianto, Zakiy Kamikho Harfy, Shultoni Mahardika, Sujono Sujono, Ayende Ayende

Abstract


The SCSF-31.2" 6-stage axial exhaust turbine in PLTP "X" is the main equipment for the power plant unit that functions to convert heat energy from steam into kinetic energy (rotation). Kinetic energy is transmitted by the shaft to the generator and then converted into electrical energy. The SCCF-31.2" 6-stage axial exhaust turbine currently operates at 7.95 bar (a) inlet pressure, 169.7 oC inlet temperature, and 112.504 kg/s steam mass rate. After evaluating the turbine performance with current actual operating data, the efficiency value is 78.8%, and it produces a gross generator power of 54.867 MW. The current efficiency value has decreased by 9.2% when compared to the initial condition. The decrease in efficiency is expected to occur due to an increase in temperature and pressure in the condenser. The temperature and pressure inside the condenser were initially at 40 °C and 0.074 bar (a) and are currently at 45.2 °C and 0.098 bar (a). Therefore, optimization is done by cleaning the channel sprayer in the condenser with the hope of increasing the water cooling flow rate and creating a wider contact area. As a result, the condenser temperature and pressure decreased so that the turbine efficiency value increased to 81.2% and the gross generator power increased to 57,224 MW


Keywords


steam turbine, evaluation, maintenance, performance, optimization

Full Text:

PDF

References


A. Toth and E. Bobok, Flow and Heat Transfer in Geothermal Systems: Basic Equations for Describing and Modeling Geothermal Phenomena and Technologies. 2016.

S. M. Yahya, “Turbines, Compressors and Fans 2nd Edition,” Tata McGraw-Hill Publ. Co. Ltd., 2002, [Online]. Available: https://books.google.com/books?id=mYeNd_jnMvkC&pgis=1.

K. Kusnadi and T. Taryana, “Usulan Waktu Penggantian Optimum Komponen Mesin Gas Engine (Prechamber Gas Valve) Dengan Model Age-Based Replacement Di Pt. Xyz,” J. Teknol., vol. 8, no. 1, p. 45, 2016, doi: 10.24853/jurtek.8.1.45-52.

P. K. Tripathy, “A practical approach,” World Cem., vol. 37, no. 9, pp. 61–65, 2006, doi: 10.5408/0022-1368-4.2-2.83.

P. Pisau and K. Tengah, “3278-8144-1-Pb,” vol. 3, no. 1, pp. 57–67, 2021.

O. W. Irawan, L. S. Pratama, and C. Insani, “Analisis Termodinamika Siklus Pembangkit Listrik Tenaga Uap Kapasitas 1500 kW,” JTM-ITI (Jurnal Tek. Mesin ITI), vol. 5, no. 3, p. 109, 2021, doi: 10.31543/jtm.v5i3.579.

M. Sagaf and S. Alim, “Prediksi Kenaikan Heat Rate Turbin Uap Pada Pembangkit Listrik Berkapasitas 660 Mw,” J. Ilm. Momentum, vol. 15, no. 2, pp. 115–120, 2019, doi: 10.36499/jim.v15i2.3075.

S. Budhi Prasetyo, “Heat Rate Pembangkit Listrik Tenaga Uap Paiton Baru (Unit 9) Berdasarkan Performance Test Tiap Bulan Dengan Beban 100%,” Tek. Mesin, Politek. Negeri Semarang, vol. 12, no. Heat Rate Berdasarkan Performance Test Saat Full Load, pp. 30–36, 2016.

K. Ronand Mahaputra, A. Mursadin, and P. Studi Teknik Mesin, “is 3,113. The average turbine efficiency value on May 23,” vol. 3, no. 1, pp. 2721–6225, 2021, [Online]. Available: https://ppjp.ulm.ac.id/journals/index.php/rot.

G. A. Kusuma, G. Mangindaan, and M. Pakiding, “Analisa Efisiensi Thermal Pembangkit Listrik Tenaga Panas Bumi Lahendong Unit 5 Dan 6 Di Tompaso,” J. Tek. Elektro dan Komput., vol. 7, no. 2, pp. 123–134, 2018.

U. J. Basuki, “Unjuk Kerja Turbin Uap Pembangkit Listrik Tenaga Panas Bumi dalam Pandangan Pendidikan Islam,” SimetriS, vol. 9, no. 1, pp. 28–33, 2015.

A. N. Sidiq and M. Anwar, “Perbandingan Efisiensi Turbin Uap Kondisi Aktual Berbasis Data Komissioning Sesuai Standard ASME PTC 6,” Kilat, vol. 10, no. 1, pp. 190–199, 2021, doi: 10.33322/kilat.v10i1.1188.

D. Prasetio, Deni; Sahbana, Muhammad Agus; Hermawan, “Optimasi Lp (Low Pressure) Auxiliary Steam Pada Desalination Plant Untuk Meningkatkan Produksi Steam Turbine Pltgu Grati,” J. Mech. Manuf. Technol., vol. 2, no. 2, pp. 52–64, 2021.

M. Yang, Y. long Zhou, D. Wang, J. Han, and Y. Yan, “Thermodynamic cycle analysis and optimization to improve efficiency in a 700 °C ultra-supercritical double reheat system,” J. Therm. Anal. Calorim., vol. 141, no. 1, pp. 83–94, 2020, doi: 10.1007/s10973-019-08871-9.

H. Santoso, “Optimalisasi untuk Menghasilkan Efisiensi Ideal Turbin Uap Pembangkit Listrik TenagaBiomassa Kapasitas 20 MW,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 3, no. 2, p. 181, 2018, doi: 10.30998/string.v3i2.3044.

S. Firza, N. Dan, I. Gede, and E. Lesmana, “Analisis Pengaruh Turbine Washing Terhadap Efisiensi dan Daya Pembangkit Turbin Uap Analysis The Effect of Turbine Washing on The Efficiency And Generating Power of Steam Turbine Informasi artikel,” vol. 3, pp. 79–88, 2021.

R. DiPippo, Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact: Fourth Edition. 2015.




DOI: http://dx.doi.org/10.30811/jpl.v21i1.3186

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .

 

Alamat Surat :

Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia