Natural Dyes as a Photosensitizer from Dragon Fruit (Hylocereus polyrhizus) for Dye-Sensitized Solar Cells

Kartika Sari, Sunardi sunardi, Dita Asa Panunggul, Agung Bambang Setio Utomo, Parmin Lumban Toruan, Ampala Khoryanton

Abstract


Natural Dye is one of the important materials of DSSC which absorbs photons from the sun’s rays and transmits the photoelectron. One of the natural dyes is Dragon fruit dye. The characterization of the optical and electrical properties of a sensitizer DSSC used a UV-Vis spectrometer, FTIR spectrometer, and solar power meter. The absorption spectra of the UV-Vis spectrometer are being measured by a wavelength range of  400 – 700 nm and show a maximum peak of 535 nm. The result of the FTIR spectrometer shows the functional group of  H-bond stretching, C=O, and C-O-H stretching vibrations.  It is a part of anthocyanin and chlorophyll.  Zinc Oxide (ZnO) paste coated on the Indium Tin Oxide (ITO) as the thin film is dipped in the Dragon fruit dye extracted for 30 hours. Thin film is prepared as the working electrode and counter electrode. The characteristic of current and voltage (I-V) as electrical properties are measured by the solar power meter.  The result of the current and voltage DSSC from Dragon fruit dye extracted coated ZnO obtained, indicated that the energy bandgap could be optimized to make a wide bandgap. ZnO thin film needs the Dragon fruit dye to decrease the surface and move electrons in the bandgap. The Dragon fruit dye extracted coated ZnO thin film could be used as a sensitizer since it will increase the correlation between the ZnO thin film and dye. And the last, it will improve the quality of solar cells as well.

Keywords


Optical and electrical properties, Zinc Oxide, Dragon fruit dye, Sensitizer Solar Cells

Full Text:

PDF

References


M. Grätzel, “Dye-sensitized solar cells,” J. Photochem. Photobiol. C Photochem. Rev., vol. 4, no. 2, pp. 145–153, 2003, doi: 10.1016/S1389-5567(03)00026-1.

S. Hao, J. Wu, Y. Huang, and J. Lin, “Natural dyes as photosensitizers for dye-sensitized solar cell,” Sol. Energy, vol. 80, no. 2, pp. 209–214, 2006, doi: 10.1016/j.solener.2005.05.009.

B. Gratzel and O. Michael, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal Ti02 films Brian,” Nature, vol. 353, no. October, pp. 737–739, 1991.

S. Chatterjee and I. B. Karki, “Effect of Photoanodes on the Performance of Dye-Sensitized Solar Cells,” J. Inst. Eng., vol. 15, no. 3, pp. 62–68, 2020, doi: 10.3126/jie.v15i3.32008.

S. Shalini, R. Balasundara Prabhu, S. Prasanna, T. K. Mallick, and S. Senthilarasu, “Review on natural dye sensitized solar cells: Operation, materials and methods,” Renew. Sustain. Energy Rev., vol. 51, pp. 1306–1325, 2015, doi: 10.1016/j.rser.2015.07.052.

G. Richhariya, A. Kumar, P. Tekasakul, and B. Gupta, “Natural dyes for dye sensitized solar cell: A review,” Renew. Sustain. Energy Rev., vol. 69, no. April 2015, pp. 705–718, 2017, doi: 10.1016/j.rser.2016.11.198.

A. Torchani, S. Saadaoui, R. Gharbi, and M. Fathallah, “Sensitized solar cells based on natural dyes,” Curr. Appl. Phys., vol. 15, no. 3, pp. 307–312, 2015, doi: 10.1016/j.cap.2015.01.003.

R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq, and Y. M. Irwan, “FT-IR and UV-VIS spectroscopy photochemical analysis of dragon fruit,” ARPN J. Eng. Appl. Sci., vol. 10, no. 15, pp. 6354–6358, 2015.

R. Ali and N. Nayan, “Fabrication and analysis of dye-sensitized solar cell using natural dye extracted from dragon fruit,” Cell, pp. 55–62, 2010, [Online]. Available: http://penerbit.uthm.edu.my/ejournal/images/stories/ijiev2n3/ijiev2n3p7.pdf

K. Wongcharee, V. Meeyoo, and S. Chavadej, “Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers,” Sol. Energy Mater. Sol. Cells, vol. 91, no. 7, pp. 566–571, 2007, doi: 10.1016/j.solmat.2006.11.005.

G. Calogero and G. Di Marco, “Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells, vol. 92, no. 11, pp. 1341–1346, 2008, doi: 10.1016/j.solmat.2008.05.007.

I. S. Mohamad, S. S. Ismail, M. N. Norizan, S. A. Z. Murad, and M. M. A. Abdullah, “ZnO Photoanode Effect on the Efficiency Performance of Organic Based Dye Sensitized Solar Cell,” IOP Conf. Ser. Mater. Sci. Eng., vol. 209, no. 1, 2017, doi: 10.1088/1757-899X/209/1/012028.

D. Ganta, J. Jara, and R. Villanueva, “Dye-sensitized solar cells using Aloe Vera and Cladode of Cactus extracts as natural sensitizers,” Chem. Phys. Lett., vol. 679, pp. 97–101, 2017, doi: 10.1016/j.cplett.2017.04.094.

A. Ehrmann and T. Blachowicz, “Comment on ‘Dye-sensitized solar cells using Aloe Vera and Cladode of Cactus extracts as natural sensitizers’ [Chem. Phys. Lett. 679 (2017) 97-101],” Chem. Phys. Lett., vol. 679, no. 2017, pp. 97–101, 2018, doi: 10.1016/j.cplett.2018.10.009.

M. Hosseinnezhad, S. Rouhani, and K. Gharanjig, “Extraction and application of natural pigments for fabrication of green dye-sensitized solar cells,” Opto-Electronics Rev., vol. 26, no. 2, pp. 165–171, 2018, doi: 10.1016/j.opelre.2018.04.004.

N. T. R. N. Kumara, A. Lim, C. Ming, and M. Iskandar, “Recent progress and utilization of natural pigments in dye sensitized solar cells : A review,” Renew. Sustain. Energy Rev., vol. 78, no. July 2016, pp. 301–317, 2017, doi: 10.1016/j.rser.2017.04.075.

L. K. Singh and B. P. Koiry, “Natural Dyes and their Effect on Efficiency of TiO2 based DSSCs: A Comparative Study,” Mater. Today Proc., vol. 5, no. 1, pp. 2112–2122, 2018, doi: 10.1016/j.matpr.2017.09.208.

B. Rahnejat, “Synthesis and characterization of Ag-doped TiO 2 nanostructure and investigation of its application as dye- sensitized solar cell,” NanoAnalysis, vol. 2, no. 2, pp. 39–45, 2015.

G. Boschloo, T. Edvinsson, and A. Hagfeldt, “Dye-Sensitized Nanostructured ZnO Electrodes for Solar Cell Applications,” Nanostructured Mater. Sol. Energy Convers., pp. 227–254, 2006, doi: 10.1016/B978-044452844-5/50009-3.

M. Hosseinnezhad et al., “Dye-sensitized solar cells based on natural photosensitizers: A green view from Iran,” J. Alloys Compd., vol. 828, p. 154329, 2020, doi: 10.1016/j.jallcom.2020.154329.

I. N. Setiawan, I. A. D. Giriantari, W. G. Ariastina, I. B. A. Swamardika, A. S. Duniaji, and N. S. Kumara, “Natural Deys from Fruit Waste as a Sensitizer for Dye Sensitized Solar Cell (DSSC),” J. Electr. Electron. Informatics, vol. 1, no. 1, p. 29, 2017, doi: 10.24843/jeei.2017.v01.i01.p06.

M. S. Abdel-L et al., “Dye-Sensitized Solar Cells Using Fifteen Natural Dyes as Sensitizers of Nanocrystalline TiO2,” Sci. Technol. Dev., vol. 34, no. 3, pp. 135–139, 2015, doi: 10.3923/std.2015.135.139.

O. Adedokun, O. L. Adedeji, I. T. Bello, M. K. Awodele, and A. O. Awodugba, “Fruit peels pigment extracts as a photosensitizer in ZnO-based Dye-Sensitized Solar Cells,” Chem. Phys. Impact, vol. 3, p. 100039, 2021, doi: 10.1016/j.chphi.2021.100039.

M. C. Ung, C. S. Sipaut, J. Dayou, K. S. Liow, J. Kulip, and R. F. Mansa, “Fruit based Dye Sensitized Solar Cells,” IOP Conf. Ser. Mater. Sci. Eng., vol. 217, no. 1, pp. 0–6, 2017, doi: 10.1088/1757-899X/217/1/012003.

A. H. Ahliha, F. Nurosyid, A. Supriyanto, and T. Kusumaningsih, “Optical properties of anthocyanin dyes on TiO2 as photosensitizers for application of dye-sensitized solar cell (DSSC),” IOP Conf. Ser. Mater. Sci. Eng., vol. 333, no. 1, pp. 0–5, 2018, doi: 10.1088/1757-899X/333/1/012018.

A. Nizori and Lamtiar, “Study of Red Dragon Fruit Peel (Hylocereus Polyrhizus) Extract as Natural Food Colorants to Physicochemical Properties of Pedada’s Jam as Functional Foods,” IOP Conf. Ser. Earth Environ. Sci., vol. 519, no. 1, 2020, doi: 10.1088/1755-1315/519/1/012012.

A. K. Chandiran, M. Abdi-Jalebi, M. K. Nazeeruddin, and M. Grätzel, “Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells,” ACS Nano, vol. 8, no. 3, pp. 2261–2268, 2014, doi: 10.1021/nn405535j.

N. Jamalullail, I. Smohamad, M. Nnorizan, and N. Mahmed, “Enhancement of Energy Conversion Efficiency for Dye Sensitized Solar Cell Using Zinc Oxide Photoanode,” IOP Conference Series: Materials Science and Engineering, vol. 374, no. 1. 2018. doi: 10.1088/1757-899X/374/1/012048.

M. M. Byranvand, a N. Kharat, and a R. Badiei, “Electron Transfer in Dye-Sensitized Nanocrystalline TiO2 Solar Cell,” J. Nanostructures, vol. 2, pp. 19–26, 2012.

M. Li et al., “ZnO Photoanode Effect on the Efficiency Performance of Organic Based Dye Sensitized Solar Cell ZnO Photoanode Effect on the Efficiency Performance of Organic Based Dye Sensitized Solar Cell”, doi: 10.1088/1757-899X/209/1/012028.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phps. E Sci. Instrum., vol. 16, no. 27, 1983.

M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. A Chem., vol. 164, no. 1–3, pp. 3–14, 2004, doi: 10.1016/j.jphotochem.2004.02.023.

A. Błaszczyk, K. Joachimiak-Lechman, S. Sady, T. Tański, M. Szindler, and A. Drygała, “Environmental performance of dye-sensitized solar cells based on natural dyes,” Sol. Energy, vol. 215, no. December 2020, pp. 346–355, 2021, doi: 10.1016/j.solener.2020.12.040.




DOI: http://dx.doi.org/10.30811/jpl.v21i1.3082

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional .

 

Alamat Surat :

Politeknik Negeri Lhokseumawe
Jl. Banda Aceh-Medan Km 280
Buketrata, Lhokseumawe, 24301, Aceh, Indonesia