Application of magnesium alloys in orthopedic implant

Fauzi Ibrahim, Irza Sukmana

Abstract


Technological updates in the field of advanced materials research are now tend to focuses on biomedical materials application and utilization of Magnesium and its’ alloys. Magnesium (Mg) has been widely studied as an alternative material for biodegradable orthopedic implant applications. Recent studies regarding the potential application of Mg have been done related to its’ mechanical properties, biodegradation profile, and the in-vitro and in-vivo testing. This study aims to review the Mg properties, production process, biomaterial roadmap, and the concern of chemical composition of Mg alloy in orthopedic application. Future potential improvement of the magnesium alloys properties is also highlighted

Keywords


Magnesium alloys; biodegradable; orthopedic implant; biomaterial roadmap

Full Text:

PDF

References


Li, Y., Wen, C., Mushahary, D., Sravanthi, R., Harishankar, N., Pande, G. and Hodgson, P., Mg–Zr–Sr alloys as biodegradable implant materials. Acta biomaterialia, 8(8), pp.3177-3188. 2012.

Chou, D.T., Hong, D., Saha, P., Ferrero, J., Lee, B., Tan, Z., Dong, Z. and Kumta, P.N., In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg–Y–Ca–Zr alloys as implant materials. Acta biomaterialia, 9(10), pp.8518-8533. 2013.

Wen, C., Guan, S., Peng, L., Ren, C., Wang, X. and Hu, Z., Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. Applied Surface Science, 255(13-14), pp.6433-6438. 2009.

Hong, D., Saha, P., Chou, D.T., Lee, B., Collins, B.E., Tan, Z., Dong, Z. and Kumta, P.N., In vitro degradation and cytotoxicity response of Mg–4% Zn–0.5% Zr (ZK40) alloy as a potential biodegradable material. Acta biomaterialia, 9(10), pp.8534-8547. 2013.

Oshkour, A. A., Pramanik, S., Mehrali, M., Yau, Y. H., Tarlochan, F., & Osman, N. A. A. Mechanical and physical behavior of newly developed functionally graded materials and composites of stainless steel 316L with calcium silicate and hydroxyapatite. Journal of the mechanical behavior of biomedical materials, 49, pp. 321-331. 2015.

Karamian, E., Motamedi, M. R. K., Khandan, A., Soltani, P., & Maghsoudi, S. An in vitro evaluation of novel NHA/zircon plasma coating on 316L SS dental implant. Progress in Natural Science: Materials International, 24(2), pp. 150-156. 2014.

Delaunay, C., Petit, I., Learmonth, I. D., Oger, P., & Vendittoli, P. A. Metal-on-metal bearings total hip arthroplasty: the cobalt and chromium ions release concern. Orthopaedics & Traumatology: Surgery & Research, 96(8), pp. 894-904. 2010.

Zeng, R.C., Cui, L.Y., Jiang, K., Liu, R., Zhao, B.D. and Zheng, Y.F., In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly (l-lactic acid) composite coating on Mg–1Li–1Ca alloy for orthopedic implants. ACS Applied Materials & Interfaces, 8(15), pp.10014-10028. 2016.

Levorova, J., Dugova, L., Ulmann, D., Vrbova, R., Duskova, J., & Foltan, R. In vivo biodegradation of magnesium alloys screws in rabbit tibia: influence on bone healing. International Journal of Oral and Maxillofacial Surgery, 46, pp. 347. 2017.

Chaya, A., Yoshizawa, S., Verdelis, K., Myers, N., Costello, B. J., Chou, D & Sfeir, C. In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta biomaterialia, 18, pp. 262-269. 2015.

Yusop, A.H.M., Alsakkaf, A., Kadir, M.R.A., Sukmana, I. and Nur, H., Corrosion of porous Mg and Fe scaffolds: a review of mechanical and biocompatibility responses. Corrosion Engineering, Science and Technology, pp.1-17. 2021.

Noor, J., Djuansjah, J.R.P., Kadir, M.R.A., and Sukmana, I., Porous Magnesium Scaffolds for Bone Implant Applications: A Review. Advanced Materials Research. 2015.

Zhuang, H., Han, Y. and Feng, A., Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds. Materials Science and Engineering: C, 28(8), pp.1462-1466. 2008.

Prakash, C., Singh, S., & Ramakrishna, S. Characterization of indigenously coated biodegradable magnesium alloy primed through novel additive manufacturing assisted investment casting. Materials Letters, 275, 128-137. 2020.

Hart, N. H., Nimphius, S., Rantalainen, T., Ireland, A., Siafarikas, A., & Newton, R. U. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. Journal of musculos-keletal & neuronal interactions, 17(3), 114. 2017.

Rodrigues, A., Caetano-Lopes, J., Nery, A., Sousa, E., PoIido-Pereira, J., VaIe, M., & Canhão, H. Evaluation of Bone Mechanical Strenght and Fracture Risk Assessment [Frax] In Patients with Hip Joint Replacement Surgery. Acta reumatologica portuguesa, 34(3). 2009.

Faruk, M. E. R. T. Wear behaviour of hot rolled AZ31B magnesium alloy as candidate for biodegradable implant material. Transactions of Nonferrous Metals Society of China, 27(12), pp. 2598-2606.2017.

Zhang, L. C., Xu, M., Hu, Y. D., Gao, F., Gong, T., Liu. Biofunctionization of biodegradable magnesium alloy to improve the in vitro corrosion resistance and biocompatibility. Applied Surface Science, 451, pp. 20-31. 2018.

Friedrich, Horst E., Barry L. Mordike. 2006. Magnesium Technology, Metallurgy, Design Data, Applications. Germany. Springer.

Buldum, B. B., Aydın, S. I. K., & Ozkul, I. Investigation of magnesium alloys machinability. International Journal of Electronics Mechanical and Mechatronics Engineering, 2(3), pp. 261-268. 2013.

Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R., & Feyerabend, F. Degradable biomaterials based on magnesium corrosion. Current opinion in solid state and materials science, 12(5-6), pp. 63-72. 2008.

Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C. J., & Windhagen, H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 26(17), pp. 3557-3563. 2005.

Jayasathyakawin, S., Ravichandran, M., Baskar, N., Chairman, C. A., & Balasundaram, R. Mechanical properties and applications of Magnesium alloy–Review. Materials Today: Proceedings, 27, pp. 909-913. 2020.

I. Sukmana. Ilmu dan Teknologi Biomaterial. Yogyakarta Indonesia: Teknosain, 2017. pp. 48-57.

I. Sukmana, S. Savetlana, Y. Burhanuddin, M.A. Wicaksono, and H. Nur. “Fabricating and Testing of Porous Magnesium Through Powder Metallurgy Technique using TWSH for Biodegradable Bone Scaffold Material”. Journal of Engineering and Scientific Research, vol. 1. No. 2, pp. 78-83, Dec. 2019.




DOI: http://dx.doi.org/10.30811/jpl.v19i2.2287

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

  

    

    

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.

 

Mailing Address:

Politeknik Negeri Lhokseumawe

Jl. Banda Aceh-Medan
Km. 280,3, Buketrata, Mesjid Punteut, Blang Mangat,
Kota Lhokseumawe, 24301

Propinsi Aceh,
Indonesia